List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2165442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature, 2019, 569, 131-135.	13.7	287
2	Largeâ€scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography. Proteomics, 2008, 8, 1346-1361.	1.3	192
3	Selective Extraction of Peptides from Human Plasma by Highly Ordered Mesoporous Silica Particles for Peptidome Analysis. Angewandte Chemie - International Edition, 2007, 46, 962-965.	7.2	174
4	Soluble FLT1 Binds Lipid Microdomains in Podocytes to Control Cell Morphology and Glomerular Barrier Function. Cell, 2012, 151, 384-399.	13.5	144
5	Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis, 2007, 28, 2201-2215.	1.3	137
6	Ultrafast enzyme immobilization over large-pore nanoscale mesoporous silica particles. Chemical Communications, 2006, , 1322.	2.2	112
7	Simple and Integrated Spintip-Based Technology Applied for Deep Proteome Profiling. Analytical Chemistry, 2016, 88, 4864-4871.	3.2	107
8	Development of Efficient Protein Extraction Methods for Shotgun Proteome Analysis of Formalin-Fixed Tissues. Journal of Proteome Research, 2007, 6, 1038-1047.	1.8	92
9	Deep Metaproteomics Approach for the Study of Human Microbiomes. Analytical Chemistry, 2017, 89, 9407-9415.	3.2	83
10	Chimeric Antigen Receptor Designed to Prevent Ubiquitination and Downregulation Showed Durable Antitumor Efficacy. Immunity, 2020, 53, 456-470.e6.	6.6	83
11	High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. Journal of Proteomics, 2018, 174, 9-16.	1.2	66
12	Combinatorial proteomic analysis of intercellular signaling applied to the CD28 T-cell costimulatory receptor. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1594-603.	3.3	65
13	The highly selective capture of phosphopeptides by zirconium phosphonate-modified magnetic nanoparticles for phosphoproteome analysis. Journal of the American Society for Mass Spectrometry, 2008, 19, 1176-1186.	1.2	64
14	Selective enrichment of endogenous peptides by chemically modified porous nanoparticles for peptidome analysis. Journal of Chromatography A, 2009, 1216, 1270-1278.	1.8	59
15	Large-pore mesoporous SBA-15 silica particles with submicrometer size as stationary phases for high-speed CEC separation. Electrophoresis, 2006, 27, 742-748.	1.3	52
16	Rare Cell Proteomic Reactor Applied to Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Quantitative Proteomics Study of Human Embryonic Stem Cell Differentiation. Molecular and Cellular Proteomics, 2011, 10, S1-S10.	2.5	52
17	Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics. Advances in Experimental Medicine and Biology, 2016, 919, 345-382.	0.8	51
18	Electrochromatographic evaluation of a silica monolith capillary column for separation of basic pharmaceuticals. Electrophoresis, 2005, 26, 790-797.	1.3	49

#	Article	IF	CITATIONS
19	Preparation of monolithic silica column with strong cation-exchange stationary phase for capillary electrochromatography. Journal of Separation Science, 2005, 28, 751-756.	1.3	48
20	Advances in chromatographic techniques and methods in shotgun proteome analysis. TrAC - Trends in Analytical Chemistry, 2007, 26, 80-84.	5.8	47
21	A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts. Skeletal Muscle, 2012, 2, 5.	1.9	43
22	Spatiotemporal profiling of cytosolic signaling complexes in living cells by selective proximity proteomics. Nature Communications, 2021, 12, 71.	5.8	43
23	Proteomics: From Technology Developments to Biological Applications. Analytical Chemistry, 2009, 81, 4585-4599.	3.2	42
24	Sequence-Specific Recognition of a PxLPxI/L Motif by an Ankyrin Repeat Tumbler Lock. Science Signaling, 2012, 5, ra39.	1.6	42
25	Characterization of small-molecule–biomacromolecule interactions: From simple to complex. TrAC - Trends in Analytical Chemistry, 2005, 24, 810-825.	5.8	39
26	CaMKIIα-driven, phosphatase-checked postsynaptic plasticity via phase separation. Cell Research, 2021, 31, 37-51.	5.7	39
27	Automation of nanoflow liquid chromatography-tandem mass spectrometry for proteome analysis by using a strong cation exchange trap column. Proteomics, 2007, 7, 528-539.	1.3	38
28	Kindlin-2 Association with Rho GDP-Dissociation Inhibitor α Suppresses Rac1 Activation and Podocyte Injury. Journal of the American Society of Nephrology: JASN, 2017, 28, 3545-3562.	3.0	38
29	Capillary electrochromatography with a neutral monolithic column for classification of analytes and determination of basic drugs in human serum. Electrophoresis, 2005, 26, 3452-3459.	1.3	36
30	Selective extraction of peptides in acidic human plasma by porous silica nanoparticles for peptidome analysis with 2â€Ð LCâ€MS/MS. Journal of Separation Science, 2007, 30, 2204-2209.	1.3	35
31	Spatial-Resolution Cell Type Proteome Profiling of Cancer Tissue by Fully Integrated Proteomics Technology. Analytical Chemistry, 2018, 90, 5879-5886.	3.2	35
32	Development of a Multiplexed Microfluidic Proteomic Reactor and Its Application for Studying Protein–Protein Interactions. Analytical Chemistry, 2011, 83, 4095-4102.	3.2	34
33	Integrated proteomics sample preparation and fractionation: Method development and applications. TrAC - Trends in Analytical Chemistry, 2019, 120, 115667.	5.8	33
34	Mitosis-specific acetylation tunes Ran effector binding for chromosome segregation. Journal of Molecular Cell Biology, 2018, 10, 18-32.	1.5	32
35	Hybrid silica monolithic column for capillary electrochromatography with enhanced cathodic electroosmotic flow. Electrophoresis, 2006, 27, 4266-4272.	1.3	31
36	Dynamic crotonylation of EB1 by TIP60 ensures accurate spindle positioning in mitosis. Nature Chemical Biology, 2021, 17, 1314-1323.	3.9	29

#	Article	IF	CITATIONS
37	Mixed-mode ion exchange-based integrated proteomics technology for fast and deep plasma proteome profiling. Journal of Chromatography A, 2018, 1564, 76-84.	1.8	28
38	Uncovering the Proteome Response of the Master Circadian Clock to Light Using an AutoProteome System. Molecular and Cellular Proteomics, 2011, 10, M110.007252.	2.5	26
39	3D-SISPROT: A simple and integrated spintip-based protein digestion and three-dimensional peptide fractionation technology for deep proteome profiling. Journal of Chromatography A, 2017, 1498, 207-214.	1.8	26
40	Analysis of the Subcellular Phosphoproteome Using a Novel Phosphoproteomic Reactor. Journal of Proteome Research, 2010, 9, 1279-1288.	1.8	25
41	Evolution of Nucleic Acid Aptamers Capable of Specifically Targeting Glioma Stem Cells via Cell-SELEX. Analytical Chemistry, 2019, 91, 8070-8077.	3.2	25
42	Separation of basic and acidic compounds by capillary electrochromatography using monolithic silica capillary columns with zwitterionic stationary phase. Journal of Separation Science, 2007, 30, 891-899.	1.3	24
43	An integrated strategy for highly sensitive phosphoproteome analysis from low micrograms of protein samples. Analyst, The, 2018, 143, 3693-3701.	1.7	24
44	A robust and scalable active-matrix driven digital microfluidic platform based on printed-circuit board technology. Lab on A Chip, 2021, 21, 1886-1896.	3.1	24
45	Spatial proteome profiling by immunohistochemistry-based laser capture microdissection and data-independent acquisition proteomics. Analytica Chimica Acta, 2020, 1127, 140-148.	2.6	23
46	Acetylation of ACAP4 regulates CCL18-elicited breast cancer cell migration and invasion. Journal of Molecular Cell Biology, 2018, 10, 559-572.	1.5	22
47	Automated injection of uncleaned samples using a ten-port switching valve and a strong cation-exchange trap column for proteome analysis. Journal of Chromatography A, 2007, 1171, 56-62.	1.8	21
48	Spatial proteomics for understanding the tissue microenvironment. Analyst, The, 2021, 146, 3777-3798.	1.7	21
49	Phosphorylation of the Bin, Amphiphysin, and RSV161/167 (BAR) domain of ACAP4 regulates membrane tubulation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11023-11028.	3.3	19
50	Photoaffinity-engineered protein scaffold for systematically exploring native phosphotyrosine signaling complexes in tumor samples. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8863-E8872.	3.3	19
51	Dissecting the multi-omics atlas of the exosomes released by human lung adenocarcinoma stem-like cells. Npj Genomic Medicine, 2021, 6, 48.	1.7	18
52	Bruton's tyrosine kinase potentiates ALK signaling and serves as a potential therapeutic target of neuroblastoma. Oncogene, 2018, 37, 6180-6194.	2.6	17
53	Mass Spectrometry-Based Protein Complex Profiling in Time and Space. Analytical Chemistry, 2021, 93, 598-619.	3.2	17
54	Improvement of performance in labelâ€free quantitative proteome analysis with monolithic electrospray ionization emitter. Journal of Separation Science, 2008, 31, 2589-2597.	1.3	16

#	Article	IF	CITATIONS
55	Analysis of low-abundance proteins using the proteomic reactor with pH fractionation. Talanta, 2010, 80, 1526-1531.	2.9	16
56	MST4 kinase phosphorylates ACAP4 protein to orchestrate apical membrane remodeling during gastric acid secretion. Journal of Biological Chemistry, 2017, 292, 16174-16187.	1.6	16
57	Fast quantitative urinary proteomic profiling workflow for biomarker discovery in kidney cancer. Clinical Proteomics, 2018, 15, 42.	1.1	16
58	Chemical proteomic study of isoprenoid chain interactome with a synthetic photoaffinity probe. Proteomics, 2008, 8, 3094-3104.	1.3	15
59	Integrated and Quantitative Proteomic Approach for Charting Temporal and Endogenous Protein Complexes. Analytical Chemistry, 2018, 90, 12574-12583.	3.2	15
60	Feedback control of PLK1 by Apolo1 ensures accurate chromosome segregation. Cell Reports, 2021, 36, 109343.	2.9	15
61	Biological fingerprinting analysis of the interactome of a kinase inhibitor in human plasma by a chemiproteomic approach. Journal of Chromatography A, 2006, 1134, 134-142.	1.8	14
62	Exploring intercellular signaling by proteomic approaches. Proteomics, 2014, 14, 498-512.	1.3	14
63	A Fully Integrated Spintip-Based Approach for Sensitive and Quantitative Profiling of Region-Resolved in Vivo Brain Glycoproteome. Analytical Chemistry, 2019, 91, 9181-9189.	3.2	14
64	Combinatory Data-Independent Acquisition and Parallel Reaction Monitoring Method for Deep Profiling of Gangliosides. Analytical Chemistry, 2020, 92, 10830-10838.	3.2	14
65	AutoProteome Chip System for Fully Automated and Integrated Proteomics Sample Preparation and Peptide Fractionation. Analytical Chemistry, 2020, 92, 8893-8900.	3.2	13
66	Phosphorylation of PP1 Regulator Sds22 by PLK1 Ensures Accurate Chromosome Segregation. Journal of Biological Chemistry, 2016, 291, 21123-21136.	1.6	12
67	OPA-Based Bifunctional Linker for Protein Labeling and Profiling. Biochemistry, 2020, 59, 175-178.	1.2	12
68	Facile synthesis of carboxymethylâ€î²â€€yclodextrin conjugated magnetic nanoparticles for selective enrichment of glycopeptides. Rapid Communications in Mass Spectrometry, 2016, 30, 190-195.	0.7	11
69	An integrated strategy for high-sensitive and multi-level glycoproteome analysis from low micrograms of protein samples. Journal of Chromatography A, 2019, 1600, 46-54.	1.8	11
70	Synergistic optimization of Liquid Chromatography and Mass Spectrometry parameters on Orbitrap Tribrid mass spectrometer for high efficient dataâ€dependent proteomics. Journal of Mass Spectrometry, 2021, 56, e4653.	0.7	11
71	Rapid and sensitive MRMâ€based mass spectrometry approach for systematically exploring gangliosideâ€protein interactions. Proteomics, 2013, 13, 1334-1338.	1.3	10
72	Time-of-Day- and Light-Dependent Expression of Ubiquitin Protein Ligase E3 Component N-Recognin 4 (UBR4) in the Suprachiasmatic Nucleus Circadian Clock. PLoS ONE, 2014, 9, e103103.	1.1	10

#	Article	IF	CITATIONS
73	CoreFlow: A computational platform for integration, analysis and modeling of complex biological data. Journal of Proteomics, 2014, 100, 167-173.	1.2	10
74	High-Throughput and Integrated Chemical Proteomic Approach for Profiling Phosphotyrosine Signaling Complexes. Analytical Chemistry, 2020, 92, 8933-8942.	3.2	10
75	Phosphorylation-regulated HMGA1a-P53 interaction unveils the function of HMGA1a acidic tail phosphorylations via synthetic proteins. Cell Chemical Biology, 2021, 28, 722-732.e8.	2.5	10
76	An enhanced chemically defined SILAC culture system for quantitative proteomics study of human embryonic stem cells. Proteomics, 2011, 11, 4040-4046.	1.3	9
77	Mutational Analysis of Glycogen Synthase Kinase 3β Protein Kinase Together with Kinome-Wide Binding and Stability Studies Suggests Context-Dependent Recognition of Kinases by the Chaperone Heat Shock Protein 90. Molecular and Cellular Biology, 2016, 36, 1007-1018.	1.1	9
78	Fully Integrated and Multiplexed Sample Preparation Technology for Sensitive Interactome Profiling. Analytical Chemistry, 2021, 93, 3026-3034.	3.2	9
79	Motif-dependent immune co-receptor interactome profiling by photoaffinity chemical proteomics. Cell Chemical Biology, 2022, 29, 1024-1036.e5.	2.5	8
80	Selective inhibition reveals the regulatory function of DYRK2 in protein synthesis and calcium entry. ELife, 2022, 11, .	2.8	8
81	High-Throughput Phosphotyrosine Protein Complexes Screening by Photoaffinity-Engineered Protein Scaffold-Based Forward-Phase Protein Array. Analytical Chemistry, 2019, 91, 10026-10032.	3.2	7
82	Combining Metabolic Alkyne Labeling and Click Chemistry for Secretome Analysis of <scp>Serumâ€Containing</scp> Conditioned Medium ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1843-1848.	2.6	7
83	Combinatory strategy using nanoscale proteomics and machine learning for T cell subtyping in peripheral blood of single multiple myeloma patients. Analytica Chimica Acta, 2021, 1173, 338672.	2.6	6
84	Fritted tip capillary column with negligible dead volume facilitated ultrasensitive and deep proteomics. Analytica Chimica Acta, 2022, 1201, 339615.	2.6	5
85	Proteomic Analysis of Secreted Proteins from Cell Microenvironment. Methods in Molecular Biology, 2017, 1662, 45-58.	0.4	4
86	Stable and EGF-Induced Temporal Interactome Profiling of CBL and CBLB Highlights Their Signaling Complex Diversity. Journal of Proteome Research, 2021, 20, 3709-3719.	1.8	4
87	A fully integrated sample preparation strategy for highly sensitive intact glycoproteomics. Analyst, The, 2022, 147, 794-798.	1.7	4
88	SH2 Domains as Affinity Reagents for Phosphotyrosine Protein Enrichment and Proteomic Analysis. Methods in Molecular Biology, 2017, 1555, 395-406.	0.4	3
89	Multiomic analysis of a dried single-drop plasma sample using an integrated mass spectrometry approach. Analyst, The, 2020, 145, 6441-6446.	1.7	3
90	Kindlin-2 promotes Src-mediated tyrosine phosphorylation of androgen receptor and contributes to breast cancer progression. Cell Death and Disease, 2022, 13, .	2.7	3

#	Article	IF	CITATIONS
91	Mass spectrometry-based ganglioside profiling provides potential insights into Alzheimer's disease development. Journal of Chromatography A, 2022, 1676, 463196.	1.8	3
92	Progress and Application of LC-MS Technologies for Characterizing Protein Post Translational Modifications. Chinese Journal of Analytical Chemistry, 2015, 43, 1479-1489.	0.9	2
93	Generic Plug-and-Play Strategy for High-Throughput Analysis of PTM-Mediated Protein Complexes. Analytical Chemistry, 2022, 94, 6799-6808.	3.2	1
94	Fe ₃ O ₄ /ethylenediaminetetraacetic acid magnetic beads-based integrated method for proteomic analysis. Chinese Journal of Chromatography (Se Pu), 2016, 34, 1264.	0.1	0
95	Zwitter-ionic Monolith-based Spintip Column Coupled with Evosep One Liquid Chromatography for High-throughput Proteomic Analysis. Journal of Chromatography A, 2022, , 463122.	1.8	0