Randy J Ellingson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2165004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the Interplay Between CdSe Thickness and Cu Doping Temperature in CdSe/CdTe Devices. IEEE Journal of Photovoltaics, 2022, 12, 11-15.	1.5	8
2	Copper iodide nanoparticles as a hole transport layer to CdTe photovoltaics: 5.5 % efficient back-illuminated bifacial CdTe solar cells. Solar Energy Materials and Solar Cells, 2022, 235, 111451.	3.0	14
3	Improving CdSeTe Devices With a Back Buffer Layer of Cu _x AlO _y . IEEE Journal of Photovoltaics, 2022, 12, 16-21.	1.5	9
4	Reduced Recombination and Improved Performance of CdSe/CdTe Solar Cells due to Cu Migration Induced by Light Soaking. ACS Applied Materials & Interfaces, 2022, 14, 19644-19651.	4.0	12
5	Impact of lifetime on the levelized cost of electricity from perovskite single junction and tandem solar cells. Sustainable Energy and Fuels, 2022, 6, 2718-2726.	2.5	11
6	Indium Gallium Oxide Emitters for High-Efficiency CdTe-Based Solar Cells. ACS Applied Energy Materials, 2022, 5, 5484-5489.	2.5	13
7	Enabling bifacial thin film devices by developing a back surface field using CuxAlOy. Nano Energy, 2021, 83, 105827.	8.2	32
8	Solution-Processed P-type Copper Gallium Oxide as a Back Buffer Layer for CdTe Solar Cells. , 2021, , .		0
9	Low-temperature and effective ex situ group V doping for efficient polycrystalline CdSeTe solar cells. Nature Energy, 2021, 6, 715-722.	19.8	31
10	Solution Processed Lead Telluride Nanowires as a Passivating Layer to CdTe Photovoltaics. , 2021, , .		1
11	Fabricating Efficient CdTe Solar Cells: The Effect of Cu Precursor. , 2021, , .		2
12	Understanding the Interplay between CdSe Thickness and Cu Doping Temperature in CdSe/CdTe Devices. , 2021, , .		6
13	Optimization of the Solution-Based Aluminium Gallium Oxide Buffer Layer for CdTe Solar Cells. , 2021, , .		2
14	Determining the Limiting Interface for Thin Film Solar Cells Using Intensity Dependent Front and Back Illuminated Device Performance. , 2021, , .		0
15	Effects of Cu Precursor on the Performance of Efficient CdTe Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 38432-38440.	4.0	15
16	Branchless Colloidal PbSe Nanorods: Implications for Solution-Processed Optoelectronic and Thermoelectric Devices. ACS Applied Nano Materials, 2021, 4, 10708-10712.	2.4	2
17	Interface modification of sputtered NiO _x as the hole-transporting layer for efficient inverted planar perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 1972-1980.	2.7	66
18	High Remaining Factors in the Photovoltaic Performance of Perovskite Solar Cells after High-Fluence Electron Beam Irradiations. Journal of Physical Chemistry C, 2020, 124, 1330-1336.	1.5	30

#	Article	IF	CITATIONS
19	Charge Compensating Defects in Methylammonium Lead Iodide Perovskite Suppressed by Formamidinium Inclusion. Journal of Physical Chemistry Letters, 2020, 11, 121-128.	2.1	15
20	Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nature Energy, 2020, 5, 768-776.	19.8	165
21	Arylammonium-Assisted Reduction of the Open-Circuit Voltage Deficit in Wide-Bandgap Perovskite Solar Cells: The Role of Suppressed Ion Migration. ACS Energy Letters, 2020, 5, 2560-2568.	8.8	131
22	Successive Ionic Layer Adsorption and Reactionâ€Deposited Transparent Cu–Zn–S Nanocomposites as Hole Transport Materials in CdTe Photovoltaics. Energy Technology, 2020, 8, 2000429.	1.8	3
23	Semi-transparent p-type barium copper sulfide as a back contact interface layer for cadmium telluride solar cells. Solar Energy Materials and Solar Cells, 2020, 218, 110764.	3.0	10
24	Aspect ratio controlled synthesis of tellurium nanowires for photovoltaic applications. Materials Advances, 2020, 1, 2721-2728.	2.6	16
25	Back-Surface Passivation of CdTe Solar Cells Using Solution-Processed Oxidized Aluminum. ACS Applied Materials & Interfaces, 2020, 12, 51337-51343.	4.0	15
26	CuSCN as the Back Contact for Efficient ZMO/CdTe Solar Cells. Materials, 2020, 13, 1991.	1.3	13
27	Understanding and Advancing Bifacial Thin Film Solar Cells. ACS Applied Energy Materials, 2020, 3, 6072-6078.	2.5	31
28	Very high V _{OC} and FF of CdTe thinâ€film solar cells with the applications of organoâ€metallic halide perovskite thin film as a hole transport layer. Progress in Photovoltaics: Research and Applications, 2020, 28, 1024-1033.	4.4	8
29	Influence of Charge Transport Layers on Capacitance Measured in Halide Perovskite Solar Cells. Joule, 2020, 4, 644-657.	11.7	69
30	Mitigation of PV Variability Using Adaptive Moving Average Control. IEEE Transactions on Sustainable Energy, 2020, 11, 2252-2262.	5.9	27
31	Maximize CdTe solar cell performance through copper activation engineering. Nano Energy, 2020, 73, 104835.	8.2	35
32	Open-circuit Voltage Exceeding 840 mV for All-Sputtered CdS/CdTe Devices. , 2020, , .		5
33	Dithieno[3,2â€b:2′,3′â€d]pyrrolâ€Cored Hole Transport Material Enabling Over 21% Efficiency Dopantâ€Fr Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1904300.	ee 7.8	114
34	Dithieno[3,2â€b:2′,3′â€d]pyrrole Cored pâ€Type Semiconductors Enabling 20 % Efficiency Dopantâ€F Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 13717-13721.	ree Perov	skite 108
35	The Role of Back Buffer Layers and Absorber Properties for >25% Efficient CdTe Solar Cells. ACS Applied Energy Materials, 2019, 2, 5419-5426.	2.5	66
36	Influences of buffer material and fabrication atmosphere on the electrical properties of CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 1115-1123.	4.4	24

#	Article	IF	CITATIONS
37	A Cu ₃ PS ₄ nanoparticle hole selective layer for efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 4604-4610.	5.2	29
38	Irradiance and temperature considerations in the design and deployment of high annual energy yield perovskite/CIGS tandems. Sustainable Energy and Fuels, 2019, 3, 1841-1851.	2.5	30
39	Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy, 2019, 61, 141-147.	8.2	152
40	Eliminating S-Kink To Maximize the Performance of MgZnO/CdTe Solar Cells. ACS Applied Energy Materials, 2019, 2, 2896-2903.	2.5	60
41	Improving Performance and Stability of Planar Perovskite Solar Cells through Grain Boundary Passivation with Block Copolymers. Solar Rrl, 2019, 3, 1900078.	3.1	40
42	Defect Analysis in CSS and Sputtered CdSexTe1-x Thin Films. , 2019, , .		1
43	Doping of CdTe using CuCl ₂ Solution for Highly Efficient Photovoltaic Devices. , 2019, , .		16
44	Room Temperature Processed Transparent Cu-Zn-S Nanocomposites as Hole Transport Materials in CdTe Photovoltaics. , 2019, , .		4
45	Optical Properties of Organic Inorganic Metal Halide Perovskite for Photovoltaics. , 2019, , .		2
46	Effects of Fabrication Atmosphere on Bulk and Back Interface Defects of CdTe Solar Cells with CdS and MgZnO Buffers. , 2019, , .		1
47	Wet chemical etching of cadmium telluride photovoltaics for enhanced open-circuit voltage, fill factor, and power conversion efficiency. Journal of Materials Research, 2019, 34, 3988-3997.	1.2	11
48	Reducing Saturation urrent Density to Realize Highâ€Efficiency Lowâ€Bandgap Mixed Tin–Lead Halide Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803135.	10.2	255
49	The Effects of Hydrogen lodide Back Surface Treatment on CdTe Solar Cells. Solar Rrl, 2019, 3, 1800304.	3.1	29
50	Solution-processed Nanocrystal Based Thin Films as Hole Transport Materials in Cadmium Telluride Photovoltaics. MRS Advances, 2018, 3, 2441-2447.	0.5	11
51	A New Hole Transport Material for Efficient Perovskite Solar Cells With Reduced Device Cost. Solar Rrl, 2018, 2, 1700175.	3.1	31
52	Enhanced Grain Size and Crystallinity in CH3NH3PbI3 Perovskite Films by Metal Additives to the Single-Step Solution Fabrication Process. MRS Advances, 2018, 3, 3237-3242.	0.5	26
53	Energy Payback Time (EPBT) and Energy Return on Energy Invested (EROI) of Perovskite Tandem Photovoltaic Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 305-309.	1.5	58
54	Impact of Moisture on Photoexcited Charge Carrier Dynamics in Methylammonium Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 6312-6320.	2.1	56

#	Article	IF	CITATIONS
55	Real Time Spectroscopic Ellipsometry Analysis of First Stage CuIn1â^'xGaxSe2 Growth: Indium-Gallium Selenide Co-Evaporation. Materials, 2018, 11, 145.	1.3	3
56	Structural, optical, and hole transport properties of earth-abundant chalcopyrite (CuFeS2) nanocrystals. MRS Communications, 2018, 8, 970-978.	0.8	33
57	Identification of Defect Levels in Copper Indium Diselenide (CuInSe2) Thin Films via Photoluminescence Studies. MRS Advances, 2018, 3, 3135-3141.	0.5	5
58	Nanocomposite (CuS) (ZnS)1 thin film back contact for CdTe solar cells: Toward a bifacial device. Solar Energy Materials and Solar Cells, 2018, 186, 227-235.	3.0	30
59	Synergistic effects of thiocyanate additive and cesium cations on improving the performance and initial illumination stability of efficient perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 2435-2441.	2.5	27
60	Binary hole transport materials blending to linearly tune HOMO level for high efficiency and stable perovskite solar cells. Nano Energy, 2018, 51, 680-687.	8.2	59
61	Low Temperature Photoluminescence Spectroscopy of Defect and Interband Transitions in CdSexTe1-x Thin Films. MRS Advances, 2018, 3, 3293-3299.	0.5	8
62	Probing the origins of photodegradation in organic–inorganic metal halide perovskites with time-resolved mass spectrometry. Sustainable Energy and Fuels, 2018, 2, 2460-2467.	2.5	84
63	Selective Cd Removal From CdTe for High-Efficiency Te Back-Contact Formation. IEEE Journal of Photovoltaics, 2018, 8, 1125-1131.	1.5	24
64	Employing Overlayers To Improve the Performance of Cu ₂ BaSnS ₄ Thin Film based Photoelectrochemical Water Reduction Devices. Chemistry of Materials, 2017, 29, 916-920.	3.2	61
65	Effect of electric field on carrier escape mechanisms in quantum dot intermediate band solar cells. Journal of Applied Physics, 2017, 121, .	1.1	12
66	Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy, 2017, 2, .	19.8	634
67	Thin film iron pyrite deposited by hybrid sputtering/co-evaporation as a hole transport layer for sputtered CdS/CdTe solar cells. Solar Energy Materials and Solar Cells, 2017, 163, 277-284.	3.0	26
68	Application of composition controlled nickel-alloyed iron sulfide pyrite nanocrystal thin films as the hole transport layer in cadmium telluride solar cells. Journal of Materials Chemistry C, 2017, 5, 4996-5004.	2.7	30
69	Ultrathin Colloidal PbS/CdS Core/Shell Nanosheets. MRS Advances, 2017, 2, 3685-3690.	0.5	2
70	Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1177-1182.	8.8	190
71	Impact of Divalent Metal Additives on the Structural and Optoelectronic Properties of CH3NH3PbI3 Perovskite Prepared by the Two-Step Solution Process. MRS Advances, 2017, 2, 1183-1188.	0.5	8
72	Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis. Nano Energy, 2017, 35, 223-232.	8.2	162

#	Article	IF	CITATIONS
73	Oxygenated CdS Buffer Layers Enabling High Openâ€Circuit Voltages in Earthâ€Abundant Cu ₂ BaSnS ₄ Thinâ€Film Solar Cells. Advanced Energy Materials, 2017, 7, 1601803.	10.2	102
74	Enhanced Grain Size, Photoluminescence, and Photoconversion Efficiency with Cadmium Addition during the Two-Step Growth of CH ₃ NH ₃ PbI ₃ . ACS Applied Materials & Interfaces, 2017, 9, 2334-2341.	4.0	45
75	Cost-effective hole transporting material for stable and efficient perovskite solar cells with fill factors up to 82%. Journal of Materials Chemistry A, 2017, 5, 23319-23327.	5.2	40
76	Imaging the Spatial Evolution of Degradation in Perovskite/Si Tandem Solar Cells After Exposure to Humid Air. IEEE Journal of Photovoltaics, 2017, 7, 1563-1568.	1.5	14
77	Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration. Energy and Environmental Science, 2017, 10, 1874-1884.	15.6	104
78	One-step facile synthesis of a simple carbazole-cored hole transport material for high-performance perovskite solar cells. Nano Energy, 2017, 40, 163-169.	8.2	89
79	Understanding the Photoluminescence Mechanism of Carbon Dots. MRS Advances, 2017, 2, 2927-2934.	0.5	15
80	13% CdS/CdTe Solar Cell Using a Nanocomposite \$(mathrm{CuS})_{x}(mathrm{ZnS})_{1-x}\$ Thin Film Hole Transport Layer. , 2017, , .		6
81	Applications of hybrid organic-inorganic metal halide perovskite thin film as a hole transport layer in CdTe thin film solar cells. , 2017, , .		7
82	Solution-Processed Nickel-Alloyed Iron Pyrite Thin Film as Hole Transport Layer in Cadmium Telluride Solar Cells. , 2017, , .		0
83	Novel, Facile Back Surface Treatment for CdTe Solar Cells. , 2017, , .		2
84	Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12080-12087.	5.2	210
85	Influence of interparticle electronic coupling on the temperature and size dependent optical properties of lead sulfide quantum dot thin films. Journal of Applied Physics, 2016, 119, .	1.1	10
86	High speed, intermediate resolution, large area laser beam induced current imaging and laser scribing system for photovoltaic devices and modules. Review of Scientific Instruments, 2016, 87, 093708.	0.6	20
87	Electronic circuit model for evaluating S-kink distorted current-voltage curves. , 2016, , .		9
88	CdTe solar cells with iron pyrite thin film back contacts fabricated by a hybrid sputtering/co-evaporation process. , 2016, , .		1
89	Exceedingly Cheap Perovskite Solar Cells Using Iron Pyrite Hole Transport Materials. ChemistrySelect, 2016, 1, 5316-5319.	0.7	25
90	Oneâ€dimensional growth of colloidal PbSe nanorods in chloroalkanes. Physica Status Solidi - Rapid Research Letters, 2016, 10, 833-837.	1.2	4

#	Article	IF	CITATIONS
91	Probing Photocurrent Nonuniformities in the Subcells of Monolithic Perovskite/Silicon Tandem Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 5114-5120.	2.1	22
92	Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. Journal of the American Chemical Society, 2016, 138, 12360-12363.	6.6	362
93	Elemental anion thermal injection synthesis of nanocrystalline marcasite iron dichalcogenide FeSe ₂ and FeTe ₂ . RSC Advances, 2016, 6, 69708-69714.	1.7	25
94	Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives. ChemSusChem, 2016, 9, 3288-3297.	3.6	178
95	Few-Atom-Thick Colloidal PbS/CdS Core/Shell Nanosheets. Chemistry of Materials, 2016, 28, 5342-5346.	3.2	19
96	Majority Carrier Type Control of Cobalt Iron Sulfide (Co _{<i>x</i>} Fe _{1–<i>x</i>} S ₂) Pyrite Nanocrystals. Journal of Physical Chemistry C, 2016, 120, 5706-5713.	1.5	45
97	Spatially resolved characterization of solution processed perovskite solar cells using the LBIC technique. , 2015, , .		3
98	Enhancing the efficiency of CdTe solar cells using a nanocrystalline iron pyrite film as an interface layer. , 2015, , .		4
99	Analysis and characterization of iron pyrite nanocrystals and nanocrystalline thin films derived from bromide anion synthesis. Journal of Materials Chemistry A, 2015, 3, 6853-6861.	5.2	36
100	Iron pyrite nanocrystal film serves as a copper-free back contact for polycrystalline CdTe thin film solar cells. Solar Energy Materials and Solar Cells, 2015, 140, 108-114.	3.0	58
101	Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites. Chemistry of Materials, 2015, 27, 4612-4619.	3.2	212
102	Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis. Renewable and Sustainable Energy Reviews, 2015, 47, 133-141.	8.2	348
103	Photoluminescence spectroscopy of Cadmium Telluride deep defects. , 2014, , .		8
104	Determination of heterojunction band offsets between CdS bulk and PbS quantum dots using photoelectron spectroscopy. Applied Physics Letters, 2014, 105, 131604.	1.5	16
105	Post-deposition processing options for high-efficiency sputtered CdS/CdTe solar cells. Journal of Applied Physics, 2014, 115, 064502.	1.1	38
106	Intraexciton Transitions Observed in High Stability Doped Single-Wall Carbon Nanotube Films and Solutions. Journal of Physical Chemistry C, 2014, 118, 25253-25260.	1.5	5
107	Thin film solar cells based on the heterojunction of colloidal PbS quantum dots with CdS. Solar Energy Materials and Solar Cells, 2013, 117, 476-482.	3.0	64
108	Bandgap, window layer thickness, and light soaking effects on PbS quantum dot solar cells. , 2013, , .		2

7

#	Article	IF	CITATIONS
109	Quantum Dot Size Dependent <i>J</i> â^' <i>V</i> Characteristics in Heterojunction ZnO/PbS Quantum Dot Solar Cells. Nano Letters, 2011, 11, 1002-1008.	4.5	277
110	n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells. Nano Letters, 2011, 11, 3263-3266.	4.5	258
111	Variations in the Quantum Efficiency of Multiple Exciton Generation for a Series of Chemically Treated PbSe Nanocrystal Films. Nano Letters, 2009, 9, 836-845.	4.5	219
112	Slicing and dicing photons. Nature Photonics, 2008, 2, 72-73.	15.6	3
113	Schottky Solar Cells Based on Colloidal Nanocrystal Films. Nano Letters, 2008, 8, 3488-3492.	4.5	882
114	Photophysics of (CdSe)ZnS colloidal quantum dots in an aqueous environment stabilized with amino acids and genetically-modified proteins. Photochemical and Photobiological Sciences, 2007, 6, 1027-1033.	1.6	19
115	Extrinsic and Intrinsic Effects on the Excited-State Kinetics of Single-Walled Carbon Nanotubes. Nano Letters, 2007, 7, 300-306.	4.5	36
116	Multiple Exciton Generation in Films of Electronically Coupled PbSe Quantum Dots. Nano Letters, 2007, 7, 1779-1784.	4.5	230
117	Multiple Exciton Generation in Colloidal Silicon Nanocrystals. Nano Letters, 2007, 7, 2506-2512.	4.5	794
118	Photoinduced Charge Carrier Generation in a Poly(3-hexylthiophene) and Methanofullerene Bulk Heterojunction Investigated by Time-Resolved Terahertz Spectroscopyâ€. Journal of Physical Chemistry B, 2006, 110, 25462-25471.	1.2	142
119	Near-infrared Fourier transform photoluminescence spectrometer with tunable excitation for the study of single-walled carbon nanotubes. Review of Scientific Instruments, 2006, 77, 053104.	0.6	19
120	PbTe Colloidal Nanocrystals:Â Synthesis, Characterization, and Multiple Exciton Generation. Journal of the American Chemical Society, 2006, 128, 3241-3247.	6.6	660
121	Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots. Nano Letters, 2005, 5, 865-871.	4.5	1,548
122	Absorption Cross-Section and Related Optical Properties of Colloidal InAs Quantum Dots. Journal of Physical Chemistry B, 2005, 109, 7084-7087.	1.2	151
123	Size Dependent Femtosecond Electron Cooling Dynamics in CdSe Quantum Rods. Nano Letters, 2004, 4, 1089-1092.	4.5	52
124	Photoenhancement of Luminescence in Colloidal CdSe Quantum Dot Solutions. Journal of Physical Chemistry B, 2003, 107, 11346-11352.	1.2	328
125	Experimental and theoretical investigation of electronic structure in colloidal indium phosphide quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1229-1232. 	0.8	2
126	Electron Relaxation in Colloidal InP Quantum Dots with Photogenerated Excitons or Chemically Injected Electrons. Journal of Physical Chemistry B, 2003, 107, 102-109.	1.2	90

#	Article	IF	CITATIONS
127	Theoretical and experimental investigation of electronic structure and relaxation of colloidal nanocrystalline indium phosphide quantum dots. Physical Review B, 2003, 67, .	1.1	28
128	Excitation Energy Dependent Efficiency of Charge Carrier Relaxation and Photoluminescence in Colloidal InP Quantum Dots. Journal of Physical Chemistry B, 2002, 106, 7758-7765.	1.2	79
129	Anomalies in the linear absorption, transient absorption, photoluminescence and photoluminescence excitation spectroscopies of colloidal InP quantum dots. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 142, 187-195.	2.0	25
130	Femtosecond IR Study of Excited-State Relaxation and Electron-Injection Dynamics of Ru(dcbpy)2(NCS)2in Solution and on Nanocrystalline TiO2and Al2O3Thin Films. Journal of Physical Chemistry B, 1999, 103, 3110-3119.	1.2	385
131	Sub-picosecond Injection of Electrons from Excited [Ru(2,2′-bipy-4,4′-dicarboxy) ₂ (SCN) ₂] into TiO ₂ Using Transient Mid-Infrared Spectroscopy*. Zeitschrift Fur Physikalische Chemie, 1999, 212, 77-84.	1.4	23
132	Dynamics of Electron Injection in Nanocrystalline Titanium Dioxide Films Sensitized with [Ru(4,4â€~-dicarboxy-2,2â€~-bipyridine)2(NCS)2] by Infrared Transient Absorption. Journal of Physical Chemistry B, 1998, 102, 6455-6458.	1.2	292
133	CdTe Thin Films from Nanoparticle Precursors by Spray Deposition. Chemistry of Materials, 1997, 9, 889-900.	3.2	30
134	Effects of chronic ethanol consumption on male syrian hamster hepatic, microsomal mixed-function oxidases. Alcohol, 1985, 2, 17-22.	0.8	8
135	Synthesis and Optical Spectroscopy of Colloidal PbS Nanosheets. , 0, , .		0