
Nina Raben

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2164389/publications.pdf Version: 2024-02-01

NINA PAREN

#	Article	IF	CITATIONS
1	Nutritional co-therapy with 1,3-butanediol and multi-ingredient antioxidants enhances autophagic clearance in Pompe disease. Molecular Genetics and Metabolism, 2022, 137, 228-240.	0.5	6
2	Impaired autophagy: The collateral damage of lysosomal storage disorders. EBioMedicine, 2021, 63, 103166.	2.7	36
3	Chemoenzymatic glycan-selective remodeling of a therapeutic lysosomal enzyme with high-affinity M6P-glycan ligands. Enzyme substrate specificity is the name of the game. Chemical Science, 2021, 12, 12451-12462.	3.7	5
4	New therapies for Pompe disease: are we closer to a cure?. Lancet Neurology, The, 2021, 20, 973-975.	4.9	3
5	Enzyme Replacement Therapy Can Reverse Pathogenic Cascade in Pompe Disease. Molecular Therapy - Methods and Clinical Development, 2020, 18, 199-214.	1.8	26
6	Pompe Disease: New Developments in an Old Lysosomal Storage Disorder. Biomolecules, 2020, 10, 1339.	1.8	52
7	SnapShot: Lysosomal Storage Diseases. Cell, 2020, 180, 602-602.e1.	13.5	16
8	Intravenous Injection of an AAV-PHP.B Vector Encoding Human Acid α-Glucosidase Rescues Both Muscle and CNS Defects in Murine Pompe Disease. Molecular Therapy - Methods and Clinical Development, 2019, 12, 233-245.	1.8	38
9	Improved efficacy of a next-generation ERT in murine Pompe disease. JCI Insight, 2019, 4, .	2.3	57
10	Pros and cons of different ways to address dysfunctional autophagy in Pompe disease. Annals of Translational Medicine, 2019, 7, 279-279.	0.7	8
11	Editorial for focused issue "Pompe disease: from basics to current and emerging therapies― Annals of Translational Medicine, 2019, 7, 275-275.	0.7	1
12	Therapeutic Benefit of Autophagy Modulation in Pompe Disease. Molecular Therapy, 2018, 26, 1783-1796.	3.7	46
13	Pompe Disease: From Basic Science to Therapy. Neurotherapeutics, 2018, 15, 928-942.	2.1	127
14	Pompe disease: how to solve many problems with one solution. Annals of Translational Medicine, 2018, 6, 313-313.	0.7	6
15	Modulation of <scp>mTOR</scp> signaling as a strategy for the treatment of Pompe disease. EMBO Molecular Medicine, 2017, 9, 353-370.	3.3	83
16	Novel degenerative and developmental defects in a zebrafish model of mucolipidosis type IV. Human Molecular Genetics, 2017, 26, 2701-2718.	1.4	16
17	Atg5flox-Derived Autophagy-Deficient Model of Pompe Disease: Does It Tell the Whole Story?. Molecular Therapy - Methods and Clinical Development, 2017, 7, 11-14.	1.8	12
18	TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy, 2016, 12, 1240-1258.	4.3	230

Nina Raben

#	Article	IF	CITATIONS
19	TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress. Annual Review of Cell and Developmental Biology, 2016, 32, 255-278.	4.0	308
20	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
21	Pompe disease: Shared and unshared features of lysosomal storage disorders. Rare Diseases (Austin,) Tj ETQq1	1 0.78431 1.8	.4 rgBT /Over
22	Defects in calcium homeostasis and mitochondria can be reversed in Pompe disease. Autophagy, 2015, 11, 385-402.	4.3	93
23	Pompe disease: from pathophysiology to therapy and back again. Frontiers in Aging Neuroscience, 2014, 6, 177.	1.7	147
24	The Nutrient-Responsive Transcription Factor TFE3 Promotes Autophagy, Lysosomal Biogenesis, and Clearance of Cellular Debris. Science Signaling, 2014, 7, ra9.	1.6	486
25	The value of muscle biopsies in Pompe disease: identifying lipofuscin inclusions in juvenile- and adult-onset patients. Acta Neuropathologica Communications, 2014, 2, 2.	2.4	55
26	Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Molecular Medicine, 2013, 5, 691-706.	3.3	273
27	Autophagy in lysosomal storage disorders. Autophagy, 2012, 8, 719-730.	4.3	345
28	Fiber Type Conversion by PGC-1α Activates Lysosomal and Autophagosomal Biogenesis in Both Unaffected and Pompe Skeletal Muscle. PLoS ONE, 2010, 5, e15239.	1.1	48
29	Restoration of muscle functionality by genetic suppression of glycogen synthesis in a murine model of Pompe disease. Human Molecular Genetics, 2010, 19, 684-696.	1.4	51
30	Suppression of autophagy permits successful enzyme replacement therapy in a lysosomal storage disorder—murine Pompe disease. Autophagy, 2010, 6, 1078-1089.	4.3	140
31	When more is less: Excess and deficiency of autophagy coexist in skeletal muscle in Pompe disease. Autophagy, 2009, 5, 111-113.	4.3	51
32	Murine muscle cell models for Pompe disease and their use in studying therapeutic approaches. Molecular Genetics and Metabolism, 2009, 96, 208-217.	0.5	35
33	Chapter 21 Monitoring Autophagy in Lysosomal Storage Disorders. Methods in Enzymology, 2009, 453, 417-449.	0.4	82
34	Modulation of glycogen synthesis by RNA interference: towards a new therapeutic approach for glycogenosis type II. Human Molecular Genetics, 2008, 17, 3876-3886.	1.4	35
35	Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Human Molecular Genetics, 2008, 17, 3897-3908.	1.4	291
36	Deconstructing Pompe Disease by Analyzing Single Muscle Fibers: "To See a World in a Grain of Sand…― Autophagy, 2007, 3, 546-552.	4.3	102

Nina Raben

#	Article	IF	CITATIONS
37	Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease. Annals of Neurology, 2006, 59, 700-708.	2.8	286
38	Autophagy and Mistargeting of Therapeutic Enzyme in Skeletal Muscle in Pompe Disease. Molecular Therapy, 2006, 14, 831-839.	3.7	169
39	Carbohydrate-remodelled acid α-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice. Biochemical Journal, 2005, 389, 619-628.	1.7	96
40	Conjugation of Mannose 6-Phosphate-containing Oligosaccharides to Acid α-Glucosidase Improves the Clearance of Glycogen in Pompe Mice. Journal of Biological Chemistry, 2004, 279, 50336-50341.	1.6	79
41	Correction of the Enzymatic and Functional Deficits in a Model of Pompe Disease Using Adeno-associated Virus Vectors. Molecular Therapy, 2002, 5, 571-578.	3.7	127
42	Carrier frequency for glycogen storage disease type II in New York and estimates of affected individuals born with the disease. , 1998, 79, 69-72.		165
43	The African Origin of the Common Mutation in African American Patients with Glycogen-Storage Disease Type II. American Journal of Human Genetics, 1998, 62, 991-994.	2.6	60
44	Targeted Disruption of the Acid α-Glucosidase Gene in Mice Causes an Illness with Critical Features of Both Infantile and Adult Human Glycogen Storage Disease Type II. Journal of Biological Chemistry, 1998, 273, 19086-19092.	1.6	250
45	A model of mRNA splicing in adult lysosomal storage disease (glycogenosis type II). Human Molecular Genetics, 1996, 5, 995-1000.	1.4	72