Pablo P Boix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2164105/publications.pdf

Version: 2024-02-01

103 papers 14,862 citations

59 h-index 30087 103 g-index

105 all docs 105 docs citations

105 times ranked 16302 citing authors

#	Article	IF	Citations
1	Perovskite Materials for Lightâ€Emitting Diodes and Lasers. Advanced Materials, 2016, 28, 6804-6834.	21.0	1,188
2	Leadâ€Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Advanced Materials, 2014, 26, 7122-7127.	21.0	942
3	High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO ₂ Nanorod and CH ₃ NH ₃ Pbl ₃ Perovskite Sensitizer. Nano Letters, 2013, 13, 2412-2417.	9.1	908
4	Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16458-16462.	3.1	657
5	Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chemical Communications, 2013, 49, 11089.	4.1	553
6	Band-gap tuning of lead halide perovskites using a sequential deposition process. Journal of Materials Chemistry A, 2014, 2, 9221-9225.	10.3	494
7	Inorganic Halide Perovskites for Efficient Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2015, 6, 4360-4364.	4.6	482
8	Lead-Free MA ₂ CuCl _{<i>x</i>} Br _{4–<i>x</i>} Hybrid Perovskites. Inorganic Chemistry, 2016, 55, 1044-1052.	4.0	457
9	Formamidinium tin-based perovskite with low E $<$ sub $>$ g $<$ /sub $>$ for photovoltaic applications. Journal of Materials Chemistry A, 2015, 3, 14996-15000.	10.3	449
10	Laminated Carbon Nanotube Networks for Metal Electrode-Free Efficient Perovskite Solar Cells. ACS Nano, 2014, 8, 6797-6804.	14.6	427
11	Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials Today, 2014, 17, 16-23.	14.2	349
12	Surface Recombination and Collection Efficiency in Perovskite Solar Cells from Impedance Analysis. Journal of Physical Chemistry Letters, 2016, 7, 5105-5113.	4.6	346
13	Impact of Anionic Br [–] Substitution on Open Circuit Voltage in Lead Free Perovskite (CsSnI _{3-x} Br _{<i>x</i>}) Solar Cells. Journal of Physical Chemistry C, 2015, 119, 1763-1767.	3.1	332
14	Simultaneous determination of carrier lifetime and electron density-of-states in P3HT:PCBM organic solar cells under illumination by impedance spectroscopy. Solar Energy Materials and Solar Cells, 2010, 94, 366-375.	6.2	326
15	Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy and Environmental Science, 2017, 10, 1207-1212.	30.8	288
16	Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production?. Joule, 2017, 1, 431-442.	24.0	274
17	Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. Journal of Physical Chemistry Letters, 2015, 6, 898-907.	4.6	266
18	Nanostructuring Mixedâ€Dimensional Perovskites: A Route Toward Tunable, Efficient Photovoltaics. Advanced Materials, 2016, 28, 3653-3661.	21.0	251

#	Article	IF	CITATIONS
19	Impedance spectroscopy characterisation of highly efficient silicon solar cells under different light illumination intensities. Energy and Environmental Science, 2009, 2, 678.	30.8	241
20	High efficiency electrospun TiO ₂ nanofiber based hybrid organic–inorganic perovskite solar cell. Nanoscale, 2014, 6, 1675-1679.	5.6	185
21	Novel cobalt/nickel–tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water. Energy and Environmental Science, 2013, 6, 2452.	30.8	182
22	Novel hole transporting materials based on triptycene core for high efficiency mesoscopic perovskite solar cells. Chemical Science, 2014, 5, 2702-2709.	7.4	180
23	Hole Transport and Recombination in All-Solid Sb ₂ S ₃ -Sensitized TiO ₂ Solar Cells Using CuSCN As Hole Transporter. Journal of Physical Chemistry C, 2012, 116, 1579-1587.	3.1	175
24	From Flat to Nanostructured Photovoltaics: Balance between Thickness of the Absorber and Charge Screening in Sensitized Solar Cells. ACS Nano, 2012, 6, 873-880.	14.6	170
25	A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 6305-6309.	10.3	167
26	Determination of gap defect states in organic bulk heterojunction solar cells from capacitance measurements. Applied Physics Letters, 2009, 95, .	3.3	162
27	Vacuum Deposited Tripleâ€Cation Mixedâ€Halide Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703506.	19.5	147
28	High performance PbS Quantum Dot Sensitized Solar Cells exceeding 4% efficiency: the role of metal precursors in the electron injection and charge separation. Physical Chemistry Chemical Physics, 2013, 15, 13835.	2.8	143
29	PEDOT Nanotube Arrays as High Performing Counter Electrodes for Dye Sensitized Solar Cells. Study of the Interactions Among Electrolytes and Counter Electrodes. Advanced Energy Materials, 2011, 1, 781-784.	19.5	142
30	Influence of the Intermediate Density-of-States Occupancy on Open-Circuit Voltage of Bulk Heterojunction Solar Cells with Different Fullerene Acceptors. Journal of Physical Chemistry Letters, 2010, 1, 2566-2571.	4.6	140
31	Holeâ€Transporting Small Molecules Based on Thiophene Cores for High Efficiency Perovskite Solar Cells. ChemSusChem, 2014, 7, 3420-3425.	6.8	139
32	Iron Pyrite Thin Film Counter Electrodes for Dye-Sensitized Solar Cells: High Efficiency for Iodine and Cobalt Redox Electrolyte Cells. ACS Nano, 2014, 8, 10597-10605.	14.6	138
33	Role of ZnO Electron-Selective Layers in Regular and Inverted Bulk Heterojunction Solar Cells. Journal of Physical Chemistry Letters, 2011, 2, 407-411.	4.6	121
34	Facile Water-based Spray Pyrolysis of Earth-Abundant Cu ₂ FeSnS ₄ Thin Films as an Efficient Counter Electrode in Dye-Sensitized Solar Cells. ACS Applied Materials & Dye-Sensitized Solar Cells. ACS Applied M	8.0	114
35	How the Charge-Neutrality Level of Interface States Controls Energy Level Alignment in Cathode Contacts of Organic Bulk-Heterojunction Solar Cells. ACS Nano, 2012, 6, 3453-3460.	14.6	113
36	Impedance analysis of perovskite solar cells: a case study. Journal of Materials Chemistry A, 2019, 7, 12191-12200.	10.3	109

#	Article	IF	Citations
37	Fluorine Treatment of TiO2 for Enhancing Quantum Dot Sensitized Solar Cell Performance. Journal of Physical Chemistry C, 2011, 115, 14400-14407.	3.1	105
38	Interfacial Modification for High-Efficiency Vapor-Phase-Deposited Perovskite Solar Cells Based on a Metal Oxide Buffer Layer. Journal of Physical Chemistry Letters, 2018, 9, 1041-1046.	4.6	101
39	Crystalline Fe 2 O 3 /Fe 2 TiO 5 heterojunction nanorods with efficient charge separation and hole injection as photoanode for solar water oxidation. Nano Energy, 2016, 22, 310-318.	16.0	100
40	Photoanodes Based on Nanostructured WO ₃ for Water Splitting. ChemPhysChem, 2012, 13, 3025-3034.	2.1	99
41	High voltage vacuum-deposited CH ₃ NH ₃ Pbl ₃ –CH ₃ NH ₃ Pbl ₃ tandem solar cells. Energy and Environmental Science, 2018, 11, 3292-3297.	30.8	98
42	Effect of Organic and Inorganic Passivation in Quantum-Dot-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 1519-1525.	4.6	96
43	Unravelling the Effects of Cl Addition in Single Step CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells. Chemistry of Materials, 2015, 27, 2309-2314.	6.7	96
44	Silicon Decorated with Amorphous Cobalt Molybdenum Sulfide Catalyst as an Efficient Photocathode for Solar Hydrogen Generation. ACS Nano, 2015, 9, 3829-3836.	14.6	91
45	Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells. Nanoscale, 2016, 8, 6352-6360.	5.6	88
46	Towards high efficiency thin film solar cells. Progress in Materials Science, 2017, 87, 246-291.	32.8	85
47	An Equivalent Circuit for Perovskite Solar Cell Bridging Sensitized to Thin Film Architectures. Joule, 2019, 3, 2535-2549.	24.0	83
48	Oxygen doping-induced photogeneration loss in P3HT:PCBM solar cells. Solar Energy Materials and Solar Cells, 2012, 100, 185-191.	6.2	82
49	Colloidal PbS and PbSeS Quantum Dot Sensitized Solar Cells Prepared by Electrophoretic Deposition. Journal of Physical Chemistry C, 2012, 116, 16391-16397.	3.1	81
50	Revealing the Role of TiO ₂ Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting. ACS Applied Materials & Solar Water Splitting.	8.0	81
51	Perovskite–Perovskite Homojunctions via Compositional Doping. Journal of Physical Chemistry Letters, 2018, 9, 2770-2775.	4.6	77
52	Perovskite Nanoparticles: Synthesis, Properties, and Novel Applications in Photovoltaics and LEDs. Small Methods, 2019, 3, 1800231.	8.6	77
53	Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells. Nanoscale, 2014, 6, 13854-13860.	5.6	76
54	Atomically Altered Hematite for Highly Efficient Perovskite Tandem Waterâ€Splitting Devices. ChemSusChem, 2017, 10, 2449-2456.	6.8	71

#	Article	IF	CITATIONS
55	Currentâ€Voltage Characteristics of Bulk Heterojunction Organic Solar Cells: Connection Between Light and Dark Curves. Advanced Energy Materials, 2011, 1, 1073-1078.	19.5	67
56	Flash infrared annealing as a cost-effective and low environmental impact processing method for planar perovskite solar cells. Materials Today, 2019, 31, 39-46.	14.2	65
57	Loading of mesoporous titania films by CH ₃ NH ₃ PbI ₃ perovskite, single step <i>vs.</i> sequential deposition. Chemical Communications, 2015, 51, 4603-4606.	4.1	64
58	Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells. Electrochimica Acta, 2012, 75, 139-147.	5.2	62
59	Engineering a Cu ₂ O/NiO/Cu ₂ MoS ₄ hybrid photocathode for H ₂ generation in water. Nanoscale, 2014, 6, 6506-6510.	5.6	62
60	Series resistance in organic bulk-heterojunction solar devices: Modulating carrier transport with fullerene electron traps. Organic Electronics, 2012, 13, 2326-2332.	2.6	60
61	Effects of Frequency Dependence of the External Quantum Efficiency of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2018, 9, 3099-3104.	4.6	59
62	Amplified Spontaneous Emission Properties of Solution Processed CsPbBr ₃ Perovskite Thin Films. Journal of Physical Chemistry C, 2017, 121, 14772-14778.	3.1	58
63	Carrier recombination losses in inverted polymer: Fullerene solar cells with ZnO hole-blocking layer from transient photovoltage and impedance spectroscopy techniques. Journal of Applied Physics, 2011, 109, .	2.5	57
64	Coreâ€"Shell Hematite Nanorods: A Simple Method To Improve the Charge Transfer in the Photoanode for Photoelectrochemical Water Splitting. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6852-6859.	8.0	57
65	Facile Synthesis of a Furan–Arylamine Holeâ€Transporting Material for Highâ€Efficiency, Mesoscopic Perovskite Solar Cells. Chemistry - A European Journal, 2015, 21, 15113-15117.	3.3	49
66	Open Circuit Potential Build-Up in Perovskite Solar Cells from Dark Conditions to 1 Sun. Journal of Physical Chemistry Letters, 2015, 6, 4640-4645.	4.6	48
67	Photocurrent enhancement in dye-sensitized photovoltaic devices with titania–graphene composite electrodes. Journal of Electroanalytical Chemistry, 2012, 683, 43-46.	3.8	47
68	Roomâ€Temperature Cubic Phase Crystallization and High Stability of Vacuumâ€Deposited Methylammonium Lead Triiodide Thin Films for Highâ€Efficiency Solar Cells. Advanced Materials, 2019, 31, e1902692.	21.0	47
69	Sb ₂ S ₃ -Sensitized Photoelectrochemical Cells: Open Circuit Voltage Enhancement through the Introduction of Poly-3-hexylthiophene Interlayer. Journal of Physical Chemistry C, 2012, 116, 20717-20721.	3.1	45
70	Molecular Passivation of MoO ₃ : Band Alignment and Protection of Charge Transport Layers in Vacuum-Deposited Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 6945-6949.	6.7	43
71	Open-Circuit Voltage Limitation in Low-Bandgap Diketopyrrolopyrrole-Based Polymer Solar Cells Processed from Different Solvents. Journal of Physical Chemistry C, 2011, 115, 15075-15080.	3.1	42
72	Influence of hole transport material ionization energy on the performance of perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 523-527.	5 . 5	39

#	Article	IF	CITATIONS
73	Understanding equivalent circuits in perovskite solar cells. Insights from drift-diffusion simulation. Physical Chemistry Chemical Physics, 2022, 24, 15657-15671.	2.8	34
74	Recombination in Organic Bulk Heterojunction Solar Cells: Small Dependence of Interfacial Charge Transfer Kinetics on Fullerene Affinity. Journal of Physical Chemistry Letters, 2012, 3, 1386-1392.	4.6	33
75	Theory of Impedance Spectroscopy of Ambipolar Solar Cells with Trap-Mediated Recombination. Journal of Physical Chemistry C, 2014, 118, 16574-16580.	3.1	28
76	Temperature and Electrical Poling Effects on Ionic Motion in MAPbI ₃ Photovoltaic Cells. Advanced Energy Materials, 2017, 7, 1700265.	19.5	26
77	Morphological Characterization of the Anterior Palatine Region Using Cone Beam Computed Tomography. Clinical Implant Dentistry and Related Research, 2015, 17, e459-64.	3.7	24
78	Interfacial Kinetics of Efficient Perovskite Solar Cells. Crystals, 2017, 7, 252.	2.2	24
79	Short Photoluminescence Lifetimes in Vacuum-Deposited CH ₃ NH ₃ Perovskite Thin Films as a Result of Fast Diffusion of Photogenerated Charge Carriers. Journal of Physical Chemistry Letters, 2019, 10, 5167-5172.	4.6	24
80	FAPb 0.5 Sn 0.5 I 3 : A Narrow Bandgap Perovskite Synthesized through Evaporation Methods for Solar Cell Applications. Solar Rrl, 2020, 4, 1900283.	5.8	24
81	Synthesis and Characterization of Organic Dyes with Various Electronâ€Accepting Substituents for pâ€Type Dyeâ€6ensitized Solar Cells. Chemistry - an Asian Journal, 2014, 9, 3251-3263.	3.3	23
82	Highly Active MnO Catalysts Integrated onto Fe ₂ O ₃ Nanorods for Efficient Water Splitting. Advanced Materials Interfaces, 2016, 3, 1600176.	3.7	22
83	Hybrid Vapor-Solution Sequentially Deposited Mixed-Halide Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 8257-8265.	5.1	21
84	High Stability Bilayered Perovskites through Crystallization Driven Self-Assembly. ACS Applied Materials & Samp; Interfaces, 2017, 9, 28743-28749.	8.0	20
85	Charge injection and trapping at perovskite interfaces with organic hole transporting materials of different ionization energies. APL Materials, 2019, 7, .	5.1	20
86	ZnS Ultrathin Interfacial Layers for Optimizing Carrier Management in Sb ₂ S ₃ -based Photovoltaics. ACS Applied Materials & Interfaces, 2021, 13, 11861-11868.	8.0	20
87	Ligand-Length Modification in CsPbBr3 Perovskite Nanocrystals and Bilayers with PbS Quantum Dots for Improved Photodetection Performance. Nanomaterials, 2020, 10, 1297.	4.1	19
88	Influence of doped charge transport layers on efficient perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 2429-2434.	4.9	16
89	Effects of energetics with {001} facet-dominant anatase TiO2 scaffold on electron transport in CH3NH3PbI3 perovskite solar cells. Electrochimica Acta, 2019, 300, 445-454.	5.2	16
90	Vacuum-Deposited Multication Tin–Lead Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 2755-2761.	5.1	16

#	Article	IF	CITATIONS
91	Enhanced operational stability through interfacial modification by active encapsulation of perovskite solar cells. Applied Physics Letters, 2020, 116, 113502.	3.3	16
92	Efficient Vacuum Deposited P-I-N Perovskite Solar Cells by Front Contact Optimization. Frontiers in Chemistry, 2019, 7, 936.	3.6	16
93	Efficient photoluminescent thin films consisting of anchored hybrid perovskite nanoparticles. Chemical Communications, 2016, 52, 11351-11354.	4.1	15
94	Kinetics of occupancy of defect states in poly(3-hexylthiophene):fullerene solar cells. Thin Solid Films, 2012, 520, 2265-2268.	1.8	14
95	Decoupling light absorption and charge transport properties in near IR-sensitized Fe2O3 regenerative cells. Energy and Environmental Science, 2013, 6, 3280.	30.8	14
96	MODULATING CH ₃ NH ₃ PbI ₃ <perovskite 09,="" 1440003.<="" 2014,="" behavior="" concentration.="" crystallization="" nano,="" precursor="" td="" through=""><td>1.0</td><td>10</td></perovskite>	1.0	10
97	Radiative and non-radiative losses by voltage-dependent in-situ photoluminescence in perovskite solar cell current-voltage curves. Journal of Luminescence, 2020, 222, 117106.	3.1	10
98	Modulating light propagation in ZnO–Cu2O-inverse opal solar cells for enhanced photocurrents. Physical Chemistry Chemical Physics, 2015, 17, 21694-21701.	2.8	9
99	Charge Transport in Organometal Halide Perovskites. , 2016, , 201-222.		9
100	FAPb _{0.5} Sn _{0.5} I ₃ : A Narrow Bandgap Perovskite Synthesized through Evaporation Methods for Solar Cell Applications. Solar Rrl, 2020, 4, 2070024.	5.8	9
101	Amplified spontaneous emission in thin films of quasi-2D BA ₃ MA ₃ Pb ₅ Br ₁₆ lead halide perovskites. Nanoscale, 2021, 13, 8893-8900.	5.6	8
102	Use of Hydrogen Molybdenum Bronze in Vacuumâ€Deposited Perovskite Solar Cells. Energy Technology, 2020, 8, 1900734.	3.8	4
103	Photovoltaics: Temperature and Electrical Poling Effects on Ionic Motion in MAPbl ₃ Photovoltaic Cells (Adv. Energy Mater. 18/2017). Advanced Energy Materials, 2017, 7, .	19.5	1