Linggen Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2164063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gd2Zr2O7 and Nd2Zr2O7 pyrochlore prepared by aqueous chemical synthesis. Journal of the European Ceramic Society, 2013, 33, 3273-3285.	5.7	116
2	A Novel Chemical Route to Prepare <scp><scp>La</scp></scp> ₂ <scp><scp>Zr</scp>₂<scp><scp>O</scp> Pyrochlore. Journal of the American Ceramic Society, 2013, 96, 935-941.</scp></scp>	<su3bas-7< s<="" td=""><td>ubs9</td></su3bas-7<>	ubs9
3	Aqueous Chemical Synthesis of <scp><scp>Ln</scp></scp> ₂ <scp><scp>Sn</scp>₂<scp>O</scp> Pyrochloreâ€6tructured Ceramics. Journal of the American Ceramic Society, 2013, 96, 2994-3000.</scp>	< 5818>7 </td <td>sub7</td>	su b7
4	Development of brannerite glassâ€ceramics for the immobilization of actinideâ€rich radioactive wastes. Journal of the American Ceramic Society, 2017, 100, 4341-4351.	3.8	38
5	Hot isostatically pressed Y2Ti2O7 and Gd2Ti2O7 pyrochlore glass-ceramics as potential waste forms for actinide immobilization. Journal of the European Ceramic Society, 2019, 39, 1546-1554.	5.7	37
6	Zirconolite glass-ceramics for plutonium immobilization: The effects of processing redox conditions on charge compensation and durability. Journal of Nuclear Materials, 2017, 490, 238-241.	2.7	35
7	Preparation of Y2Ti2O7 pyrochlore glass-ceramics as potential waste forms for actinides: The effects of processing conditions. Journal of Nuclear Materials, 2017, 494, 29-36.	2.7	35
8	Current advances on titanate glass-ceramic composite materials as waste forms for actinide immobilization: A technical review. Journal of the European Ceramic Society, 2022, 42, 1852-1876.	5.7	32
9	Synthesis and characterization of Nd2SnxZr2â^xO7 pyrochlore ceramics. Ceramics International, 2014, 40, 651-657.	4.8	31
10	Uranium brannerite with Tb(III)/Dy(III) ions: Phase formation, structures, and crystallizations in glass. Journal of the American Ceramic Society, 2019, 102, 7699-7709.	3.8	31
11	Novel Chemical Synthesis and Characterization of CeTi2O6 Brannerite. Inorganic Chemistry, 2014, 53, 6761-6768.	4.0	30
12	Structural and spectroscopic investigations on the crystallization of uranium brannerite phases in glass. Journal of the American Ceramic Society, 2018, 101, 5219-5228.	3.8	28
13	A new method for production of glass-Ln2Ti2O7 pyrochlore (Ln = Gd, Tb, Er, Yb). Journal of the European Ceramic Society, 2017, 37, 4963-4972.	5.7	27
14	Phase evolution from Ln ₂ Ti ₂ O ₇ (Ln=Y and Gd) pyrochlores to brannerites in glass with uranium incorporation. Journal of the American Ceramic Society, 2017, 100, 5335-5346.	3.8	26
15	Pyrochlore glassâ€ceramics fabricated via both sintering and hot isostatic pressing for minor actinide immobilization. Journal of the American Ceramic Society, 2020, 103, 5470-5479.	3.8	22
16	Soft chemical synthesis and structural characterization of Y2HfxTi2â^'xO7. Ceramics International, 2015, 41, 5309-5317.	4.8	20
17	Theoretical and experimental Raman spectroscopic studies of synthetic thorutite (ThTi2O6). Journal of Nuclear Materials, 2014, 446, 68-72.	2.7	19
18	Phase evolution and microstructure analysis of CaZrTi2O7 zirconolite in glass. Ceramics	4.8	19

International, 2018, 44, 6285-6292.

Linggen Kong

#	Article	IF	CITATIONS
19	New pathway for the preparation of pyrochlore Nd2Zr2O7 nanoparticles. Ceramics International, 2015, 41, 7618-7625.	4.8	17
20	Synthesis of hexa aza cages, SarAr-NCS and AmBaSar and a study of their metal complexation, conjugation to nanomaterials and proteins for application in radioimaging and therapy. Dalton Transactions, 2013, 42, 14402.	3.3	16
21	Optimizing Radiolabeling Amine-Functionalized Silica Nanoparticles Using SarAr-NCS for Applications in Imaging and Radiotherapy. Langmuir, 2013, 29, 5609-5616.	3.5	15
22	Synthesis and Characterization of Rutile Nanocrystals Prepared in Aqueous Media at Low Temperature. Journal of the American Ceramic Society, 2012, 95, 816-822.	3.8	13
23	CaZrTi ₂ O ₇ zirconolite synthesis: From ceramic to glass eramic. International Journal of Applied Ceramic Technology, 2019, 16, 1460-1470.	2.1	12
24	The incorporation of Nd or Ce in CaZrTi2O7 zirconolite: Ceramic versus glass-ceramic. Journal of Nuclear Materials, 2021, 543, 152583.	2.7	12
25	Novel synthesis and thermal property analysis of MgO–Nd2Zr2O7 composite. Ceramics International, 2016, 42, 16888-16896.	4.8	11
26	Surface evolution and radiation damage of a zirconolite glass-ceramic by Au ion implantation. Applied Surface Science, 2019, 478, 373-382.	6.1	9
27	Phase assemblage and microstructures of Gd2Ti2-xZrxO7 (x = 0.1–0.3) pyrochlore glass-ceramics as potential waste forms for actinide immobilization. Materials Chemistry and Physics, 2021, 273, 125058.	4.0	9
28	One-pot synthesis of Ln2Sn2O7 pyrochlore and MgAl2O4 spinel by soft chemistry route as potential inert matrix fuel system, and the microstructural analysis. Journal of Nuclear Materials, 2020, 531, 152037.	2.7	7
29	New synthesis route for lead zirconate titanate powder. Ceramics International, 2016, 42, 6782-6790.	4.8	6
30	Synthesis of silica nanoparticles using oil-in-water emulsion and the porosity analysis. Journal of Sol-Gel Science and Technology, 2012, 64, 309-314.	2.4	5
31	Synthesis of hierarchical mesoporous Ln2Ti2O7 (LnÂ=ÂY, Tb–Yb) pyrochlores and uranyl sorption properties. Journal of Materials Science and Technology, 2022, 113, 22-32.	10.7	2
32	Crystal chemistry and ionâ€irradiation resistance of Ln 2 ZrO 5 compounds with Ln Â=ÂSm, Eu, Gd, and Tb. Journal of the American Ceramic Society, 0, , .	3.8	2