Kulvinder Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2164041/publications.pdf

Version: 2024-02-01

394421 377865 1,171 40 19 34 citations g-index h-index papers 40 40 40 1489 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sensors and Actuators B: Chemical, 2017, 253, 703-713.	7.8	112
2	Recent advances in nanocellulose processing, functionalization and applications: a review. Materials Advances, 2021, 2, 1872-1895.	5.4	108
3	Synthesis of CeO2–ZnO nanoellipsoids as potential scaffold for the efficient detection of 4-nitrophenol. Sensors and Actuators B: Chemical, 2014, 202, 1044-1050.	7.8	92
4	Green synthesis of manganese oxide nanoparticles for the electrochemical sensing of p-nitrophenol. International Nano Letters, 2017, 7, 123-131.	5.0	70
5	Plasmonic DNA hotspots made from tungsten disulfide nanosheets and gold nanoparticles for ultrasensitive aptamer-based SERS detection of myoglobin. Mikrochimica Acta, 2018, 185, 158.	5.0	69
6	Ultra-high sensitive hydrazine chemical sensor based on low-temperature grown ZnO nanoparticles. Electrochimica Acta, 2012, 69, 128-133.	5.2	62
7	Graphitic carbon nitride QDs impregnated biocompatible agarose cartridge for removal of heavy metals from contaminated water samples. Journal of Hazardous Materials, 2019, 367, 629-638.	12.4	61
8	Visible light driven photocatalysis of organic dyes using SnO2 decorated MoS2 nanocomposites. Chemical Physics Letters, 2020, 738, 136874.	2.6	58
9	Three-dimensional Graphene with MoS 2 Nanohybrid as Potential Energy Storage/Transfer Device. Scientific Reports, 2017, 7, 9458.	3.3	53
10	Luminescent ZnO quantum dots as an efficient sensor for free chlorine detection in water. Analyst, The, 2016, 141, 2487-2492.	3.5	52
11	Removal of inorganic toxic contaminants from wastewater using sustainable biomass: A review. Science of the Total Environment, 2022, 823, 153689.	8.0	41
12	Synthesis of highly luminescent water stable ZnO quantum dots as photoluminescent sensor for picric acid. Journal of Luminescence, 2014, 154, 148-154.	3.1	39
13	Modification and management of lignocellulosic waste as an ecofriendly biosorbent for the application of heavy metal ions sorption. Materials Today: Proceedings, 2020, 32, 608-619.	1.8	38
14	A comparison on the performance of zinc oxide and hematite nanoparticles for highly selective and sensitive detection of para-nitrophenol. Journal of Applied Electrochemistry, 2015, 45, 253-261.	2.9	34
15	Facile synthesis of sulfur and nitrogen codoped graphene quantum dots for optical sensing of Hg and Ag ions. Chemical Physics Letters, 2019, 730, 436-444.	2.6	32
16	Solvothermal assisted phosphate functionalized graphitic carbon nitride quantum dots for optical sensing of Fe ions and its thermodynamic aspects. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117773.	3.9	26
17	Biosynthesis of silver nanocrystals, their kinetic profile from nucleation to growth and optical sensing of mercuric ions. Journal of Cleaner Production, 2019, 228, 294-302.	9.3	25
18	Development of metal free melamine modified graphene oxide for electrochemical sensing of epinephrine. FlatChem, 2021, 30, 100288.	5.6	25

#	Article	IF	CITATIONS
19	Non-Enzymatic Glucose Sensor Based on Well-Crystallized ZnO Nanoparticles. Science of Advanced Materials, 2012, 4, 994-1000.	0.7	25
20	Utilization of ZnO Nanoflowers as Efficient Electrochemical Catalyst for the Oxidation of Hydrazine. Sensor Letters, 2015, 13, 1002-1006.	0.4	19
21	Well-Crystalline <l>α</l> -Fe ₂ O ₃ Nanoparticles for Hydrazine Chemical Sensor Application. Science of Advanced Materials, 2011, 3, 962-967.	0.7	17
22	Highly Sensitive Enzyme-Less Glucose Biosensor Based on $\langle i \rangle \hat{i} \pm \langle i \rangle$ -Fe $\langle sub \rangle 2 \langle sub \rangle 3 \langle sub \rangle$ Nanoparticles. Nanoscience and Nanotechnology Letters, 2018, 10, 429-434.	0.4	16
23	Ytterbium-Doped ZnO Flowers Based Phenyl Hydrazine Chemical Sensor. Journal of Nanoscience and Nanotechnology, 2019, 19, 4199-4204.	0.9	12
24	Phyllanthus emblica seed extract as corrosion inhibitor for stainless steel used in petroleum industry (SS-410) in acidic medium. Chemical Physics Impact, 2021, 3, 100038.	3.5	11
25	Enhanced photocatalytic activity of plasmonic Au nanoparticles incorporated MoS2 nanosheets for degradation of organic dyes. Journal of Materials Science: Materials in Electronics, 2021, 32, 6168-6184.	2.2	10
26	Biosynthesis of silver nanospheres, kinetic profiling and their application in the optical sensing of mercury and chlorite ions in aqueous solutions. Environmental Research, 2021, 197, 111142.	7.5	10
27	Strategy to improve the super-capacitive and hydrogen evolution performance of graphitic carbon nitrides via enrichment of carbon content. Journal of Alloys and Compounds, 2021, 858, 157671.	5.5	9
28	Investigation of visible light photocatalytic degradation of organic dyes by MoS2 nanosheets synthesized by different routes. Bulletin of Materials Science, 2022, 45, 1.	1.7	8
29	Highly Sensitive Picric Acid Chemical Sensor Based on Samarium (Sm) Doped ZnO Nanorods. Journal of Nanoscience and Nanotechnology, 2019, 19, 3637-3642.	0.9	7
30	Recent progress on heterostructures of photocatalysts for environmental remediation. Materials Today: Proceedings, 2020, 32, 584-593.	1.8	7
31	Graphene quantum dots functionalized with Bovine Serum Albumin for sensing of hypochlorite ions. Materials Chemistry and Physics, 2021, 273, 125088.	4.0	6
32	Nanosensors for Food Safety and Environmental Monitoring. Nanotechnology in the Life Sciences, 2020, , 63-84.	0.6	6
33	Electrochemical Determination of Hydrazine Using ZnO Nanoellipsoids Modified Gold Electrode. Sensor Letters, 2016, 14, 577-582.	0.4	3
34	Multicomponent Gold Hybrid Structures: Synthesis and Applications. Reviews in Advanced Sciences and Engineering, 2012, 1, 103-118.	0.6	3
35	Exploring the surfactant structure efficacy in controlling growth and stability of HgS nanoparticles in aqueous medium. Chemical Physics Impact, 2022, 4, 100070.	3.5	3
36	Role of non-conventional hydrogen bonding in controlling regioselectivity for nucleophilic aromatic substitution of 4,6-dinitroisoindoline-1,3-dione with 1,2,3-triazole isomers: a computational studies. Structural Chemistry, 2021, 32, 1269-1278.	2.0	2

3

#	Article	IF	CITATIONS
37	Catalyst free enantioselective amination via S _N 2 nucleophilic substitution reaction: a computational study. Molecular Simulation, 2020, 46, 942-946.	2.0	O
38	Fabrication and Functionalization of Ionic Liquids. , 2020, , 225-238.		0
39	Comparative computational studies for nucleophilic aromatic substitution of dinitro-substituted benzannulated heterocycles with 1H-1,2,3-triazole. Structural Chemistry, 0, , .	2.0	O
40	Carbon nitride-based optical sensors for metal ion detection., 2022,, 245-259.		0