
Eiichi Wakai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2163781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Irradiation damages of structural materials under different irradiation environments. Journal of Nuclear Materials, 2021, 543, 152503.	1.3	11
2	Tensile behavior of dual-phase titanium alloys under high-intensity proton beam exposure: Radiation-induced omega phase transformation in Ti-6Al-4V. Journal of Nuclear Materials, 2020, 541, 152413.	1.3	15
3	Radiation Damage Studies on Titanium Alloys as High Intensity Proton Accelerator Beam Window Materials. , 2020, , .		2
4	New Design and Fabrication Technology Applied in Mercury Target Vessel #8 of J-PARC. , 2020, , .		0
5	Introduction to the Proceedings. , 2020, , .		Ο
6	Technical Evaluation of Cutting Device for Volume Reduction of High Radio-Activated Instruments. , 2020, , .		0
7	Mitigation of Cavitation Damage in J-PARC Mercury Target Vessel. , 2020, , .		Ο
8	Effects of Helium and Displacement Damage on Microstructural Evolution in Helium-Implanted Martensitic Steel HCM12A Examined by TEM and Positron Annihilation Lifetime Measurement. , 2020, , .		0
9	Effects of Helium Production and Displacement Damage on Microstructural Evolution in Helium-Implanted Austenitic Stainless Steel and Martensitic Steel Examined by HIT Experiment and kMC Simulation. , 2020, , .		0
10	Optimum Temperature for HIP Bonding Invar Alloy and Stainless Steel. Materials Transactions, 2019, 60, 1026-1033.	0.4	3
11	Recent studies for structural integrity evaluation and defect inspection of J-PARC spallation neutron source target vessel. Journal of Nuclear Materials, 2018, 506, 3-11.	1.3	7
12	Optimization study on structural analyses for the J-PARC mercury target vessel. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 894, 8-19.	0.7	6
13	The accomplishments of lithium target and test facility validation activities in the IFMIF/EVEDA phase. Nuclear Fusion, 2018, 58, 015001.	1.6	9
14	Effects of helium production, displacement damage on mechanical properties and surface acoustic wave in austenitic stainless steels and martensitic steel. Nuclear Materials and Energy, 2018, 17, 34-39.	0.6	6
15	Study of the radiation damage effect on Titanium metastable beta alloy by high intensity proton beam. Nuclear Materials and Energy, 2018, 15, 169-174.	0.6	15
16	The design and thermo-structural analysis of target assembly for high intensity neutron source. Nuclear Materials and Energy, 2018, 17, 15-23.	0.6	0
17	Cavitation inception upstream of liquid lithium target for intense fusion neutron source. Fusion Engineering and Design, 2017, 124, 990-994.	1.0	2
18	Application of small specimen test technique to evaluate fracture toughness of reduced activation ferritic/martensitic steel. Fusion Engineering and Design, 2017, 125, 326-329.	1.0	9

#	Article	IF	CITATIONS
19	Experimental Study on Cavitation of a Liquid Lithium Jet for International Fusion Materials Irradiation Facility. Journal of Nuclear Engineering and Radiation Science, 2017, 3, .	0.2	2
20	Analytical and experimental study of the evaporation and deposition rates from a high-speed liquid lithium jet. Fusion Engineering and Design, 2017, 122, 176-185.	1.0	5
21	Validation of liquid lithium target stability for an intense neutron source. Nuclear Fusion, 2017, 57, 066008.	1.6	19
22	Overview of the IFMIF/EVEDA project. Nuclear Fusion, 2017, 57, 102016.	1.6	76
23	High Temperature Fatigue Life Evaluation Using Small Specimen. Plasma and Fusion Research, 2017, 12, 1405022-1405022.	0.3	4
24	Measurement of lithium target surface velocity in the IFMIF/EVEDA lithium test loop. Fusion Engineering and Design, 2016, 109-111, 1682-1686.	1.0	9
25	Engineering validation for lithium target facility of the IFMIF under IFMIF/EVEDA project. Nuclear Materials and Energy, 2016, 9, 278-285.	0.6	11
26	Removal of low-concentration deuterium from fluidized Li loop for IFMIF. Fusion Engineering and Design, 2016, 109-111, 1340-1344.	1.0	5
27	Evaluation of annealing and double ion beam irradiation by a laser-induced and laser-detected surface acoustic wave diagnostic system. Radiation Physics and Chemistry, 2016, 127, 264-268.	1.4	6
28	Round Robin test for the determination of nitrogen concentration in solid Lithium. Fusion Engineering and Design, 2016, 107, 13-24.	1.0	11
29	Free-Surface Characteristics of a Liquid Li Wall Jet. Plasma and Fusion Research, 2016, 11, 1405117-1405117.	0.3	3
30	Nitrogen Hot Trap Design and Manufactures for Lithium Test Loop in IFMIF/EVEDA Project. Plasma and Fusion Research, 2016, 11, 2405112-2405112.	0.3	2
31	Demonstration of Li target facility in IFMIF/EVEDA project: Li target stability in continuous operation of entire system. Fusion Engineering and Design, 2016, 109-111, 1759-1763.	1.0	12
32	Anti-obesity effects of Asian dayflower, Commelina communis, in mice with high-fat diet-induced obesity and in 3T3-L1 cells. Journal of Functional Foods, 2016, 22, 490-503.	1.6	12
33	Effect of Helium on Irradiation Creep Behavior of B-Doped F82H Irradiated in HFIR. Fusion Science and Technology, 2015, 68, 648-651.	0.6	5
34	Neutronic Analysis of IFMIF High Flux Test Module for High Temperature Irradiation. Fusion Science and Technology, 2015, 68, 657-661.	0.6	2
35	Validation of IFMIF liquid Li target for IFMIF/EVEDA project. Fusion Engineering and Design, 2015, 96-97, 117-122.	1.0	22
36	The accomplishment of the Engineering Design Activities of IFMIF/EVEDA: The European–Japanese project towards a Li(d,xn) fusion relevant neutron source. Nuclear Fusion, 2015, 55, 086003.	1.6	63

#	Article	IF	CITATIONS
37	Laser-induced surface acoustic waves and their detection via diagnostic systems for detecting radiation damage on steel materials of nuclear devices. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 786, 47-50.	0.7	8
38	Chemical reaction of lithium with room temperature atmosphere of various humidities. Fusion Engineering and Design, 2015, 98-99, 2138-2141.	1.0	7
39	Measurement of Li target thickness in the EVEDA Li Test Loop. Fusion Engineering and Design, 2015, 98-99, 1991-1997.	1.0	17
40	Overview on recent progress toward small specimen test technique. Fusion Engineering and Design, 2015, 98-99, 2089-2093.	1.0	17
41	The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities. Fusion Engineering and Design, 2015, 100, 425-430.	1.0	18
42	ICONE23-1110 MEASUREMENT OF CAVITATION IN A DOWNSTREAM CONDUIT OF THE LIQUID LITHIUM TARGET FOR INTERNATIONAL FUSION MATERIALS IRRADIATION FACILITY. The Proceedings of the International Conference on Nuclear Engineering (ICONE), 2015, 2015.23, _ICONE23-1ICONE23-1.	0.0	4
43	Effect of Hydrogen on Crack Growth Behavior in F82H Steel Using Small-Size Specimen. , 2015, , 209-224.		0
44	IFMIF, a fusion relevant neutron source for material irradiation current status. Journal of Nuclear Materials, 2014, 453, 115-119.	1.3	27
45	Current status of the technology development on lithium safety handling under IFMIF/EVEDA. Fusion Engineering and Design, 2014, 89, 2902-2909.	1.0	10
46	The start-up and observation of the Li target in the EVEDA Li test loop. Fusion Engineering and Design, 2014, 89, 1688-1693.	1.0	13
47	Evaluation of applicability of laser-based distance meter to measure Li-jet thickness for IFMIF/EVEDA project. Fusion Engineering and Design, 2014, 89, 1642-1647.	1.0	21
48	Assessment of the beam–target interaction of IFMIF: A state of the art. Fusion Engineering and Design, 2014, 89, 1709-1716.	1.0	15
49	Engineering Validation and Engineering Design of Lithium Target Facility in IFMIF/EVEDA Project. Fusion Science and Technology, 2014, 66, 46-56.	0.6	7
50	Fabrication and performance test of contact-type liquid level sensor for measuring thickness variation of liquid lithium jet in the IFMIF/EVEDA lithium test loop. Fusion Engineering and Design, 2013, 88, 2547-2551.	1.0	4
51	IFMIF: overview of the validation activities. Nuclear Fusion, 2013, 53, 116001.	1.6	66
52	Development of fatigue life evaluation method using small specimen. Journal of Nuclear Materials, 2013, 441, 125-132.	1.3	23
53	Application of master curve method to the evaluation of fracture toughness of F82H steels. Journal of Nuclear Materials, 2013, 442, S38-S42.	1.3	12
54	Current status of the engineering design of the test modules for the IFMIF. Fusion Engineering and Design, 2013, 88, 746-750.	1.0	14

#	Article	IF	CITATIONS
55	0211 Two-dimensional measurement of the interface profile of Viscous Fingers flowing down an inclined plane. The Proceedings of the Fluids Engineering Conference, 2013, 2013, _0211-010211-02	0.0	0
56	Materials for New Generation Nuclear Energy Systems? Current State and Future Agenda for Material Developments (7). Atomos, 2013, 55, 235-244.	0.0	0
57	Analysis of Test Matrix and Design Status of Test Modules in IFMIF. Fusion Science and Technology, 2012, 62, 246-251.	0.6	7
58	Engineering Design of Contact-Type Liquid Level Sensor for Measuring Thickness Variation of Liquid Lithium Jet in IFMIF/EVEDA Lithium Test Loop. Fusion Science and Technology, 2012, 62, 258-264.	0.6	4
59	Completion of IFMIF/EVEDA lithium test loop construction. Fusion Engineering and Design, 2012, 87, 418-422.	1.0	30
60	Thermo-structural analysis of integrated back plate in IFMIF/EVEDA liquid lithium target. Fusion Engineering and Design, 2011, 86, 2482-2486.	1.0	2
61	Hydraulic analysis on effects of back-plate deformation upon stability of high-speed free-surface lithium flow for IFMIF target design. Fusion Engineering and Design, 2011, 86, 2478-2481.	1.0	5
62	Workload foreseen for the IFMIF Post Irradiation Examination Facility. Fusion Engineering and Design, 2011, 86, 2522-2525.	1.0	3
63	Design plan and requirement of test module and testing items in IFMIF. Fusion Engineering and Design, 2011, 86, 712-715.	1.0	6
64	Basic design guideline for the preliminary engineering design of PIE facilities in IFMIF/EVEDA. Fusion Engineering and Design, 2011, 86, 2904-2907.	1.0	3
65	Small specimen test technology and methodology of IFMIF/EVEDA and the further subjects. Journal of Nuclear Materials, 2011, 417, 1325-1330.	1.3	26
66	Irradiation effect on mechanical properties in structural materials of fast breeder reactor plant. Journal of Nuclear Materials, 2011, 414, 205-210.	1.3	5
67	IFMIF/EVEDA lithium test loop: design and fabrication technology of target assembly as a key component. Nuclear Fusion, 2011, 51, 123008.	1.6	39
68	Study on Fatigue Life Evaluation Using Small Specimens for Testing Neutron-Irradiated Materials. Journal of Nuclear Science and Technology, 2011, 48, 60-64.	0.7	2
69	Reduction method of DBTT shift due to irradiation for reduced-activation ferritic/martensitic steels. Journal of Nuclear Materials, 2010, 398, 64-67.	1.3	16
70	Positron annihilation lifetime measurements of vanadium alloy and F82H irradiated with fission and fusion neutrons. Journal of Nuclear Materials, 2009, 386-388, 203-205.	1.3	1
71	Effect of two-steps heat treatments on irradiation hardening in F82H irradiated at 573K. Journal of Nuclear Materials, 2009, 386-388, 315-318.	1.3	19
72	Thermal-stress analysis of IFMIF target back-wall made of reduced-activation ferritic steel and austenitic stainless steel. Journal of Nuclear Materials, 2009, 386-388, 987-990.	1.3	4

#	Article	IF	CITATIONS
73	Nondestructive Evaluation of Neutron Irradiation Damage on Austenitic Stainless Steels by Measurement of Magnetic Flux Density. , 2009, , .		0
74	Technical issues of reduced activation ferritic/martensitic steels for fabrication of ITER test blanket modules. Fusion Engineering and Design, 2008, 83, 1471-1476.	1.0	84
75	Latest design of liquid lithium target in IFMIF. Fusion Engineering and Design, 2008, 83, 1007-1014.	1.0	22
76	A three-dimensional meso-scale computer modeling for bubble growth in metals. Modelling and Simulation in Materials Science and Engineering, 2008, 16, 055003.	0.8	5
77	Correlation Between Tensile Property and Micro-Hardness Irradiated RAF/M Steel. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 785-788.	0.2	2
78	Foreword to Feature Articles on the Recent Advances in Microstructure Research for Materials Development via Microscopy (8). Materia Japan, 2008, 47, 597-597.	0.1	0
79	Microstructural Evolution in Cerium Dioxide Irradiated with Heavy Ions at High Temperature. Advanced Materials Research, 2007, 26-28, 929-932.	0.3	0
80	Extra-Irradiation Hardening of Reduced Activation Ferritic/Martensitic Steel by Multi-Ion Irradiation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2007, 71, 1107-1111.	0.2	1
81	Effect of Helium and Hydrogen Production on Irradiation Hardening of F82H Steel Irradiated by Ion Beams. Materials Transactions, 2007, 48, 1427-1430.	0.4	7
82	Microstructure dependence of deuterium retention and blistering in the near-surface region of tungsten exposed to high flux deuterium plasmas of 38 eV at 315 K. Physica Scripta, 2007, T128, 96-99.	1.2	89
83	Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma. Nuclear Fusion, 2007, 47, 201-209.	1.6	185
84	Effect of Al and Be ions pre-implantation on formation and growth of helium bubbles in SiC/SiC composites. Nuclear Instruments & Methods in Physics Research B, 2007, 256, 669-674.	0.6	1
85	Effects of irradiation on mechanical properties of HIP-bonded reduced-activation ferritic/martensitic steel F82H first wall. Journal of Nuclear Materials, 2007, 367-370, 494-499.	1.3	1
86	Effect of displacement damage up to 50dpa on microstructural development in SiC/SiC composites. Journal of Nuclear Materials, 2007, 367-370, 698-702.	1.3	6
87	Effect of solute elements in Ni alloys on blistering under He+ and D+ ion irradiation. Journal of Nuclear Materials, 2007, 367-370, 478-482.	1.3	9
88	Effect of heat treatments on tensile properties of F82H steel irradiated by neutrons. Journal of Nuclear Materials, 2007, 367-370, 74-80.	1.3	11
89	Mechanical properties and microstructures in F82H steel irradiated under alternating temperature. Journal of Nuclear Materials, 2007, 367-370, 112-116.	1.3	4
90	Effects of heat treatment and irradiation on mechanical properties in F82H steel doped with boron and nitrogen. Journal of Nuclear Materials, 2007, 367-370, 107-111.	1.3	9

#	Article	IF	CITATIONS
91	Effect of temperature change on the irradiation hardening of the structural alloys for ITER blanket and ITER TBM irradiated to 1.5dpa in JMTR. Journal of Nuclear Materials, 2007, 367-370, 539-543.	1.3	3
92	Effect of gas atoms and displacement damage on mechanical properties and microstructures of F82H. Journal of Nuclear Materials, 2006, 356, 95-104.	1.3	49
93	Mechanical properties of small size specimens of F82H steel. Fusion Engineering and Design, 2006, 81, 1077-1084.	1.0	11
94	Effect of Initial Heat Treatment on DBTT of F82H Steel Irradiated by Neutrons. Fusion Science and Technology, 2005, 47, 856-860.	0.6	10
95	Heat Treatment Effects on Microstructures and DBTT of F82H Steel Doped with Boron and Nitrogen. Materials Transactions, 2005, 46, 193-195.	0.4	5
96	Effects of Helium Production and Heat Treatment on Neutron Irradiation Hardening of F82H Steels Irradiated with Neutrons. Materials Transactions, 2005, 46, 481-486.	0.4	11
97	Effect of Heat Treatments on Mechanical Properties and Microstructures of 8Cr-2W(F82H) Steel Doped with Boron or Boron and Nitrogen. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 460-464.	0.2	1
98	Tempering Treatment Effect on Mechanical Properties of F82H Steel Doped with Boron and Nitrogen. Materials Transactions, 2005, 46, 1779-1782.	0.4	1
99	Point Defect Formation in V-4Cr-4Ti and F82H Irradiated with Fission and Fusion Neutrons. Materials Transactions, 2005, 46, 445-449.	0.4	7
100	Radiation hardening and -embrittlement due to He production in F82H steel irradiated at 250°C in JMTR. Journal of Nuclear Materials, 2005, 343, 285-296.	1.3	53
101	Mechanisms of uranium mineralization by the yeast Saccharomyces cerevisiae. Geochimica Et Cosmochimica Acta, 2005, 69, 5307-5316.	1.6	52
102	Synergistic Effect of Helium and Hydrogen for Defect Evolution under Multi-ion Irradiation on Fe-Cr Alloys. Materia Japan, 2005, 44, 1004-1004.	0.1	1
103	Effect of tempering temperature and time on tensile properties of F82H irradiated by neutrons. Journal of Nuclear Materials, 2004, 329-333, 1133-1136.	1.3	16
104	Y2O3 nano-particle formation in ODS ferritic steels by Y and O dual ion-implantation. Journal of Nuclear Materials, 2004, 329-333, 392-396.	1.3	25
105	Synergistic effect of helium and hydrogen for defect evolution under multi-ion irradiation of Fe–Cr ferritic alloys. Journal of Nuclear Materials, 2004, 329-333, 294-298.	1.3	117
106	Synergistic effect of displacement damage and helium atoms on radiation hardening in F82H at TIARA facility. Journal of Nuclear Materials, 2004, 329-333, 1137-1141.	1.3	55
107	Post irradiation plastic properties of F82H derived from the instrumented tensile tests. Journal of Nuclear Materials, 2004, 335, 457-461.	1.3	11
108	Synergistic effects of implanted helium and hydrogen and the effect of irradiation temperature on the microstructure of SiC/SiC composites. Journal of Nuclear Materials, 2004, 335, 508-514.	1.3	38

#	Article	IF	CITATIONS
109	Mechanisms of arsenic immobilization in a biomat from mine discharge water. Chemical Geology, 2004, 212, 279-290.	1.4	29
110	Lead-Bismuth Eutectic Compatibility with Materials in the Concept of Spallation Target for ADS. JSME International Journal Series B, 2004, 47, 332-339.	0.3	21
111	Mechanical Property of F82H Steel Doped with Boron and Nitrogen. Materials Transactions, 2004, 45, 2641-2643.	0.4	8
112	Mechanical Properties and Microstructure of F82H Steel doped with Boron or Boron and Nitrogen as a Function of Heat Treatment. Materials Transactions, 2004, 45, 407-410.	0.4	9
113	Effect of Initial Heat Treatment on Tensile Properties of F82H Steel Irradiated by Neutrons. Materials Transactions, 2004, 45, 2638-2640.	0.4	2
114	Swelling behavior of F82H steel irradiated by triple/dual ion beams. Journal of Nuclear Materials, 2003, 318, 267-273.	1.3	78
115	Tensile and impact properties of F82H steel applied to HIP-bond fusion blanket structures. Fusion Engineering and Design, 2003, 69, 385-389.	1.0	23
116	Corrosion–erosion test of SS316 in flowing Pb–Bi. Journal of Nuclear Materials, 2003, 318, 348-354.	1.3	28
117	Ni-Doped F82H to Investigate He Effects in HFIR Irradiation. Fusion Science and Technology, 2003, 44, 201-205.	0.6	3
118	ICONE11-36245 RECENT ACTIVITIES OF PB-BI TECHNOLOGY FOR ADS AT JAERI. The Proceedings of the International Conference on Nuclear Engineering (ICONE), 2003, 2003, 344.	0.0	1
119	Microstructural development and swelling behaviour of F82H steel irradiated by dual ion beams. Journal of Electron Microscopy, 2002, 51, S239-S243.	0.9	6
120	High-Temperature Mechanical Properties of High-Purity 70 mass% Cr-Fe Alloy. Physica Status Solidi A, 2002, 189, 87-96.	1.7	2
121	Microstructure and hardness of HIP-bonded regions in F82H blanket structures. Journal of Nuclear Materials, 2002, 307-311, 289-292.	1.3	9
122	Effect of triple ion beams in ferritic/martensitic steel on swelling behavior. Journal of Nuclear Materials, 2002, 307-311, 278-282.	1.3	63
123	Swelling of cold-worked austenitic stainless steels irradiated in HFIR under spectrally tailored conditions. Journal of Nuclear Materials, 2002, 307-311, 352-356.	1.3	11
124	Effect of solute atoms on swelling in Ni alloys and pure Ni under He+ ion irradiation. Journal of Nuclear Materials, 2002, 307-311, 367-373.	1.3	22
125	Swelling behavior of TIG-welded F82H IEA heat. Journal of Nuclear Materials, 2002, 307-311, 312-316.	1.3	22
126	Phase stability and mechanical properties of irradiated Ti–Al–V intermetallic compound. Journal of Nuclear Materials, 2002, 307-311, 389-392.	1.3	4

#	Article	IF	CITATIONS
127	Microstructural study of irradiated isotopically tailored F82H steel. Journal of Nuclear Materials, 2002, 307-311, 203-211.	1.3	28
128	Effect of simultaneous ion irradiation on microstructural change of SiC/SiC composites at high temperature. Journal of Nuclear Materials, 2002, 307-311, 1135-1140.	1.3	20
129	Damage Structures and Mechanical Properties of High-Purity Fe–9Cr Alloys Irradiated by Neutrons. Materials Transactions, JIM, 2000, 41, 1180-1183.	0.9	23
130	Microstructural Evolution of Fe–Cr–W Model Alloys during Fe ⁺ Ion Irradiation. Materials Transactions, JIM, 2000, 41, 1176-1179.	0.9	1
131	Effects of Neutron Irradiation on Tensile Properties in High-Purity Fe–(9–50)Cr and Fe–50Cr– <i>x</i> W Alloys. Materials Transactions, JIM, 2000, 41, 136-140.	0.9	3
132	Radiation Effects on the Plasticity and Microstructure of Ti-Al-V Alloys Containing β Phase. Materials Research Society Symposia Proceedings, 2000, 650, 391.	0.1	1
133	Microstructure of austenitic stainless steels irradiated at 400°C in the ORR and the HFIR spectral tailoring experiment. Journal of Nuclear Materials, 2000, 280, 186-195.	1.3	12
134	Tensile properties and damage microstructures in ORR/HFIR-irradiated austenitic stainless steels. Journal of Nuclear Materials, 2000, 283-287, 435-439.	1.3	14
135	Swelling of F82H irradiated at 673 K up to 51 dpa in HFIR. Journal of Nuclear Materials, 2000, 283-287, 334-338.	1.3	24
136	Effect of helium production on swelling of F82H irradiated in HFIR. Journal of Nuclear Materials, 2000, 283-287, 799-805.	1.3	70
137	Radiation-induced segregation in model alloys. Journal of Nuclear Materials, 2000, 283-287, 244-248.	1.3	7
138	Damage structure in austenitic stainless steel 316LN irradiated at low temperature in the HFIR. Journal of Electron Microscopy, 1999, 48, 575-580.	0.9	9
139	Relationship between hardening and damage structure in austenitic stainless steel 316LN irradiated at low temperature in the HFIR. Journal of Nuclear Materials, 1999, 273, 95-101.	1.3	63
140	Effects of Neutron Irradiation on Tensile Properties in High-Purity Fe–Cr Alloys. Physica Status Solidi A, 1997, 160, 441-448.	1.7	14
141	Radiation-Induced \hat{I}_{\pm} ' Phase Formation on Dislocation Loops in Fe-Cr Alloys During Electron Irradiation. European Physical Journal Special Topics, 1995, 05, C7-277-C7-286.	0.2	8
142	Solute Diffusion under Point Defect Flux by Irradiation. Defect and Diffusion Forum, 1993, 95-98, 237-242.	0.4	0
143	Radiation-induced Segregation in Ni Alloys by Deuterium Ion Irradiations. Materials Transactions, JIM, 1992, 33, 884-891.	0.9	9
144	The effect of helium atoms on radiation-induced segregation in nickel alloys. Journal of Nuclear Materials, 1992, 191-194, 1346-1350.	1.3	4

#	Article	IF	CITATIONS
145	Radiation-induced solute segregation in Al and Ni binary alloys under HVEM irradiation. Ultramicroscopy, 1991, 39, 187-196.	0.8	9
146	Dependence of the X-ray detector orientation on Cliff-Lorimer factor for quantitative microanalysis in an electron microscope. Ultramicroscopy, 1990, 32, 121-126.	0.8	3
147	New Design of High Power Mercury Target Vessel of J-PARC. Materials Science Forum, 0, 1024, 145-150.	0.3	1
148	Effects of Helium Production and Displacement Damage on Microstructural Evolution and Mechanical Properties in Helium-Implanted Austenitic Stainless Steel and Ferritic/Martensitic Steel. Materials Science Forum, 0, 1024, 53-69.	0.3	1
149	Effect of Gas Microbubble Injection and Narrow Channel Structure on Cavitation Damage in Mercury Target Vessel. Materials Science Forum, 0, 1024, 111-120.	0.3	3