Conchi Ania

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2163633/publications.pdf

Version: 2024-02-01

43973 66788 7,341 156 48 78 citations h-index g-index papers 160 160 160 8519 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons. Microporous and Mesoporous Materials, 2005, 85, 7-15.	2.2	241
2	Waste-derived activated carbons for removal of ibuprofen from solution: Role of surface chemistry and pore structure. Bioresource Technology, 2009, 100, 1720-1726.	4.8	208
3	Importance of Structural and Chemical Heterogeneity of Activated Carbon Surfaces for Adsorption of Dibenzothiophene. Langmuir, 2005, 21, 7752-7759.	1.6	206
4	Transferable Force Field for Carbon Dioxide Adsorption in Zeolites. Journal of Physical Chemistry C, 2009, 113, 8814-8820.	1.5	199
5	Deep eutectic solvents as both precursors and structure directing agents in the synthesis of nitrogen doped hierarchical carbons highly suitable for CO2 capture. Energy and Environmental Science, 2011, 4, 3535.	15.6	176
6	Microwave-induced regeneration of activated carbons polluted with phenol. A comparison with conventional thermal regeneration. Carbon, 2004, 42, 1383-1387.	5.4	165
7	H2, N2, CO, and CO2Sorption Properties of a Series of Robust Sodalite-Type Microporous Coordination Polymers. Inorganic Chemistry, 2006, 45, 2397-2399.	1.9	158
8	Removal of an analgesic using activated carbons prepared from urban and industrial residues. Chemical Engineering Journal, $2010,163,249$ - $255.$	6.6	157
9	Guest-Induced Modification of a Magnetically Active Ultramicroporous, Gismondine-like, Copper(II) Coordination Network. Journal of the American Chemical Society, 2008, 130, 3978-3984.	6.6	149
10	Understanding Gas-Induced Structural Deformation of ZIF-8. Journal of Physical Chemistry Letters, 2012, 3, 1159-1164.	2.1	143
11	Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2. Carbon, 2015, 91, 330-337.	5 . 4	133
12	Surface modification of low cost carbons for their application in the environmental protection. Applied Surface Science, 2005, 252, 619-624.	3.1	122
13	Metal-loaded polystyrene-based activated carbons as dibenzothiophene removal media via reactive adsorption. Carbon, 2006, 44, 2404-2412.	5.4	122
14	Chapter 4 Surface chemistry of activated carbons and its characterization. Interface Science and Technology, 2006, , 159-229.	1.6	122
15	Role of activated carbon features on the photocatalytic degradation of phenol. Applied Surface Science, 2010, 256, 5254-5258.	3.1	121
16	Biomass waste-derived activated carbon for the removal of arsenic and manganese ions from aqueous solutions. Applied Surface Science, 2009, 255, 4650-4657.	3.1	120
17	N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions. Carbon, 2015, 83, 262-274.	5.4	118
18	Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons. Journal of Colloid and Interface Science, 2015, 449, 252-260.	5.0	112

#	Article	IF	CITATIONS
19	Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals. Water Research, 2007, 41, 3299-3306.	5.3	111
20	Surface Modification of CNTs with N-Doped Carbon: An Effective Way of Enhancing Their Performance in Supercapacitors. ACS Sustainable Chemistry and Engineering, 2014, 2, 1049-1055.	3.2	111
21	Adsorption of naphthalene from aqueous solution on activated carbons obtained from bean pods. Journal of Hazardous Materials, 2009, 161, 1150-1156.	6.5	102
22	Stability of a carbon gel electrode when used for the electro-assisted removal of ions from brackish water. Carbon, 2011, 49, 3723-3730.	5.4	96
23	Photochemical behaviour of activated carbons under UV irradiation. Carbon, 2012, 50, 249-258.	5.4	91
24	Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueous solution. Applied Surface Science, 2010, 256, 5171-5175.	3.1	90
25	Influence of oxygen-containing functional groups on active carbon adsorption of selected organic compounds. Fuel Processing Technology, 2002, 79, 265-271.	3.7	88
26	Mechanism of adsorption and electrosorption of bentazone on activated carbon cloth in aqueous solutions. Water Research, 2007, 41, 3372-3380.	5. 3	84
27	A novel method for metal oxide deposition on carbon aerogels with potential application in capacitive deionization of saline water. Electrochimica Acta, 2014, 135, 208-216.	2.6	81
28	Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors. Carbon, 2009, 47, 3158-3166.	5 . 4	79
29	New copper/GO based material as an efficient oxygen reduction catalyst in an alkaline medium: The role of unique Cu/rGO architecture. Applied Catalysis B: Environmental, 2015, 163, 424-435.	10.8	77
30	Removal of naphthalene from aqueous solution on chemically modified activated carbons. Water Research, 2007, 41, 333-340.	5.3	76
31	On the analysis of diffuse reflectance measurements to estimate the optical properties of amorphous porous carbons and semiconductor/carbon catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 398, 112622.	2.0	72
32	Deep eutectic assisted synthesis of carbon adsorbents highly suitable for low-pressure separation of CO2–CH4 gas mixtures. Energy and Environmental Science, 2012, 5, 8699.	15.6	71
33	Textural development and hydrogen adsorption of carbon materials from PET waste. Journal of Alloys and Compounds, 2004, 379, 280-289.	2.8	66
34	Role of crystal size on swing-effect and adsorption induced structure transition of ZIF-8. Dalton Transactions, 2016, 45, 6893-6900.	1.6	66
35	Assessing the Potential of Biochars Prepared by Steam-Assisted Slow Pyrolysis for CO ₂ Adsorption and Separation. Energy & Steam (1988), 32, 10218-10227.	2.5	64
36	Solvent-free ionic liquids as in situ probes for assessing the effect of ion size on the performance of electrical double layer capacitors. Carbon, 2006, 44, 3126-3130.	5.4	62

#	Article	IF	Citations
37	High value carbon materials from PET recycling. Applied Surface Science, 2004, 238, 304-308.	3.1	61
38	Low temperature regeneration of activated carbons using microwaves: Revising conventional wisdom. Journal of Environmental Management, 2012, 102, 134-140.	3.8	61
39	Kinetics of naphthalene adsorption on an activated carbon: Comparison between aqueous and organic media. Chemosphere, 2009, 76, 433-438.	4.2	60
40	Supercapacitive Behavior of Two Glucoseâ€Derived Microporous Carbons: Direct Pyrolysis versus Hydrothermal Carbonization. ChemElectroChem, 2014, 1, 2138-2145.	1.7	59
41	Effects of activated carbon properties on the adsorption of naphthalene from aqueous solutions. Applied Surface Science, 2007, 253, 5741-5746.	3.1	58
42	Electrochemical response of carbon aerogel electrodes in saline water. Journal of Electroanalytical Chemistry, 2012, 671, 92-98.	1.9	57
43	Influence of protons on reduction degree and defect formation in electrochemically reduced graphene oxide. Carbon, 2019, 149, 722-732.	5.4	56
44	Enhanced electrochemical response of carbon quantum dot modified electrodes. Talanta, 2018, 178, 679-685.	2.9	55
45	Role of phosphorus in carbon matrix in desulfurization of diesel fuel using adsorption process. Fuel, 2012, 92, 318-326.	3.4	54
46	Photoinduced reactions occurring on activated carbons. A combined photooxidation and ESR study. Applied Catalysis A: General, 2013, 452, 1-8.	2.2	52
47	Using DFT analysis of adsorption data of multiple gases including H2 for the comprehensive characterization of microporous carbons. Carbon, 2007, 45, 1066-1071.	5.4	51
48	Carbon foams as catalyst supports for phenol photodegradation. Journal of Hazardous Materials, 2010, 184, 843-848.	6.5	50
49	Visible‣ight Photochemical Activity of Nanoporous Carbons under Monochromatic Light. Angewandte Chemie - International Edition, 2014, 53, 4146-4148.	7.2	49
50	Photochemistry of nanoporous carbons: Perspectives in energy conversion and environmental remediation. Journal of Colloid and Interface Science, 2017, 490, 879-901.	5.0	48
51	Competitive siloxane adsorption in multicomponent gas streams for biogas upgrading. Chemical Engineering Journal, 2018, 344, 565-573.	6.6	48
52	Borderline microporous–ultramicroporous palladium(ii) coordination polymer networks. Effect of pore functionalisation on gas adsorption properties. Journal of Materials Chemistry, 2007, 17, 1939-1946.	6.7	47
53	Light-induced generation of radicals on semiconductor-free carbon photocatalysts. Applied Catalysis A: General, 2013, 453, 310-315.	2.2	47
54	Visible light driven photoelectrochemical water splitting on metal free nanoporous carbon promoted by chromophoric functional groups. Carbon, 2014, 79, 432-441.	5.4	47

#	Article	IF	CITATIONS
55	On the mechanism of reactive adsorption of dibenzothiophene on organic waste derived carbons. Applied Surface Science, 2007, 253, 5899-5903.	3.1	45
56	Performance of activated carbons in consecutive phenol photooxidation cycles. Carbon, 2014, 73, 206-215.	5. 4	45
57	Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons. Advanced Science, 2018, 5, 1800293.	5. 6	45
58	Effect of texture and surface chemistry on adsorptive capacities of activated carbons for phenolic compounds removal. Fuel Processing Technology, 2002, 77-78, 337-343.	3.7	44
59	Exploiting the adsorption of simple gases O2 and H2 with minimal quadrupole moments for the dual gas characterization of nanoporous carbons using 2D-NLDFT models. Carbon, 2020, 160, 164-175.	5.4	44
60	Understanding phenol adsorption mechanisms on activated carbons. Adsorption, 2011, 17, 247-254.	1.4	43
61	Chemically activated high grade nanoporous carbons from low density renewable biomass (Agave) Tj ETQq1 3	l 0.784314 rg 5.0	BT /Overlock 41
62	Engaging nanoporous carbons in "beyond adsorption―applications: Characterization, challenges and performance. Carbon, 2020, 164, 69-84.	5.4	41
63	Activated carbon from coal tar pitch and furfural for the removal of p-nitrophenol and m-aminophenol. Chemical Engineering Journal, 2011, 172, 102-108.	6.6	40
64	Activated carbons from waste biomass and low rank coals as catalyst supports for hydrogen production by methanol decomposition. Fuel Processing Technology, 2015, 137, 139-147.	3.7	40
65	Adsorption of p-cresol on novel diatomite/carbon composites. Journal of Hazardous Materials, 2011, 188, 304-310.	6.5	39
66	Importance of the Hydrophobic Character of Activated Carbons on the Removal of Naphthalene from the Aqueous Phase. Adsorption Science and Technology, 2007, 25, 155-167.	1.5	37
67	Porosity development during steam activation of carbon foams from chemically modified pitch. Microporous and Mesoporous Materials, 2012, 154, 56-61.	2.2	37
68	Efficient nitrogen-doping and structural control of hierarchical carbons using unconventional precursors in the form of deep eutectic solvents. Journal of Materials Chemistry A, 2014, 2, 17387-17399.	5 . 2	37
69	Role of hydrogen bonding in the capture and storage of ammonia in zeolites. Chemical Engineering Journal, 2020, 387, 124062.	6.6	37
70	Pyrolysis of activated carbons exhausted with organic compounds. Journal of Analytical and Applied Pyrolysis, 2005, 74, 518-524.	2.6	36
71	Electrochemical Regeneration of Activated Carbon Cloth Exhausted with Bentazone. Environmental Science & Environmental Science	4.6	36
72	Thermodynamics of hydrogen adsorption on calcium-exchanged faujasite-type zeolites. International Journal of Hydrogen Energy, 2009, 34, 4371-4378.	3.8	36

#	Article	IF	CITATIONS
73	Molecular Sieves for the Separation of Hydrogen Isotopes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 18833-18840.	4.0	36
74	A rapid microwave-assisted synthesis of a sodium–cadmium metal–organic framework having improved performance as a CO ₂ adsorbent for CCS. Dalton Transactions, 2015, 44, 9955-9963.	1.6	35
75	Nitrogen-doped carbons prepared from eutectic mixtures as metal-free oxygen reduction catalysts. Journal of Materials Chemistry A, 2016, 4, 478-488.	5.2	35
76	Carbon-mediated photoinduced reactions as a key factor in the photocatalytic performance of C/TiO2. Catalysis Science and Technology, 2012, 2, 2264.	2.1	34
77	Insights on the Molecular Mechanisms of Hydrogen Adsorption in Zeolites. Journal of Physical Chemistry C, 2013, 117, 14374-14380.	1.5	33
78	Effects of CO2 activation of carbon aerogels leading to ultrahigh micro-meso porosity. Microporous and Mesoporous Materials, 2015, 209, 18-22.	2.2	33
79	Mn-Containing N-Doped Monolithic Carbon Aerogels with Enhanced Macroporosity as Electrodes for Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2016, 4, 2487-2494.	3.2	32
80	Mesoporous carbon black-aerogel composites with optimized properties for the electro-assisted removal of sodium chloride from brackish water. Journal of Electroanalytical Chemistry, 2015, 741, 42-50.	1.9	31
81	Oxygen-Induced Decrease in the Equilibrium Adsorptive Capacities of Activated Carbons. Adsorption Science and Technology, 2004, 22, 337-351.	1.5	30
82	On the use of carbon black loaded nitrogen-doped carbon aerogel for the electrosorption of sodium chloride from saline water. Electrochimica Acta, 2015, 170, 154-163.	2.6	30
83	Dual role of copper on the reactivity of activated carbons from coal and lignocellulosic precursors. Microporous and Mesoporous Materials, 2012, 154, 68-73.	2.2	29
84	Predicting the suitability of aqueous solutions of deep eutectic solvents for preparation of co-continuous porous carbons via spinodal decomposition processes. Carbon, 2017, 123, 536-547.	5.4	29
85	Synthesis of nanoporous carbons from mixtures of coal tar pitch and furfural and their application as electrode materials. Fuel Processing Technology, 2010, 91, 1710-1716.	3.7	28
86	Linz-Donawitz Steel Slag for the Removal of Hydrogen Sulfide at Room Temperature. Environmental Science & Environmental Scienc	4.6	28
87	Carbon black directed synthesis of ultrahigh mesoporous carbon aerogels. Carbon, 2013, 63, 487-497.	5 . 4	28
88	Role of the surface chemistry of the adsorbent on the initialization step of the water sorption process. Carbon, 2016, 106, 284-288.	5 . 4	28
89	Tailoring the textural properties of an activated carbon for enhancing its adsorption capacity towards diclofenac from aqueous solution. Environmental Science and Pollution Research, 2019, 26, 6141-6152.	2.7	28
90	Visible light driven photooxidation of phenol on TiO2/Cu-loaded carbon catalysts. Carbon, 2014, 76, 183-192.	5 . 4	27

#	Article	IF	Citations
91	Nanoporous carbon/WO3 anodes for an enhanced water photooxidation. Carbon, 2016, 108, 471-479.	5.4	27
92	Upgrading of Wastewater Treatment Plants Through the Use of Unconventional Treatment Technologies: Removal of Lidocaine, Tramadol, Venlafaxine and Their Metabolites. Water (Switzerland), 2012, 4, 650-669.	1.2	26
93	Photochemical and electrochemical reduction of graphene oxide thin films: tuning the nature of surface defects. Physical Chemistry Chemical Physics, 2020, 22, 20732-20743.	1.3	25
94	Toward a Transferable Set of Charges to Model Zeolitic Imidazolate Frameworks: Combined Experimental–Theoretical Research. Journal of Physical Chemistry C, 2013, 117, 466-471.	1.5	24
95	Catalytic behavior of alkali-treated Pt/HMOR in n-hexane hydroisomerization. Applied Catalysis A: General, 2014, 476, 148-157.	2.2	24
96	Textural characterisation of activated carbons obtained from poly(ethylene terephthalate) by carbon dioxide activation. Studies in Surface Science and Catalysis, 2002, , 537-543.	1.5	23
97	Nanoconfinement of glucose oxidase on mesoporous carbon electrodes with tunable pore sizes. Journal of Electroanalytical Chemistry, 2018, 808, 372-379.	1.9	23
98	Photochemical Degradation of Cyanides and Thiocyanates from an Industrial Wastewater. Molecules, 2019, 24, 1373.	1.7	23
99	Porous Organic Polymers Containing Active Metal Centers for Suzuki–Miyaura Heterocoupling Reactions. ACS Applied Materials & Interfaces, 2020, 12, 56974-56986.	4.0	23
100	Structural Changes in Polyethylene Terephthalate (PET) Waste Materials Caused by Pyrolysis and CO2 Activation. Adsorption Science and Technology, 2006, 24, 439-450.	1.5	21
101	Sunlight photoactivity of rice husks-derived biogenic silica. Catalysis Today, 2019, 328, 125-135.	2.2	21
102	Effect of outgassing temperature on the performance of porous materials. Applied Surface Science, 2010, 256, 5182-5186.	3.1	20
103	Reactive adsorption of penicillin on activated carbons. Adsorption, 2011, 17, 421-429.	1.4	20
104	Sulfur-mediated photochemical energy harvesting in nanoporous carbons. Carbon, 2016, 104, 253-259.	5.4	20
105	Boosting visible light conversion in the confined pore space of nanoporous carbons. Carbon, 2016, 96, 98-104.	5.4	20
106	Further Extending the Dilution Range of the "Solvent-in-DES―Regime upon the Replacement of Water by an Organic Solvent with Hydrogen Bond Capabilities. ACS Sustainable Chemistry and Engineering, 2020, 8, 12120-12131.	3.2	20
107	Sodium on the Surface of Activated Carbons as a Factor Enhancing Reactive Adsorption of Dibenzothiophene. Energy & Dibenzothiophene. Energy & Dibenzothiophene. Energy & Dibenzothiophene. Energy & Dibenzothiophene.	2.5	19
108	Role of surface adsorption and porosity features in the molecular recognition ability of imprinted solâ \in "gels. Biosensors and Bioelectronics, 2008, 23, 1101-1108.	5.3	19

#	Article	IF	CITATIONS
109	Synthesis of Porous and Mechanically Compliant Carbon Aerogels Using Conductive and Structural Additives. Gels, 2016, 2, 4.	2.1	19
110	Carbon science perspective in 2022: Current research and future challenges. Carbon, 2022, 195, 272-291.	5.4	19
111	Moisture insensitive adsorption of ammonia on resorcinol-formaldehyde resins. Journal of Hazardous Materials, 2016, 305, 96-104.	6.5	18
112	Photochemical reactivity of apical oxygen in KSr2Nb5O15 materials for environmental remediation under UV irradiation. Journal of Colloid and Interface Science, 2017, 496, 211-221.	5.0	17
113	Potential of CO2 capture from flue gases by physicochemical and biological methods: A comparative study. Chemical Engineering Journal, 2021, 417, 128020.	6.6	17
114	Phenol Adsorption and Photo-Oxidation on Porous Carbon/Titania Composites. Adsorption Science and Technology, 2010, 28, 727-738.	1.5	16
115	Tuning the Surface Chemistry of Nanoporous Carbons for Enhanced Nanoconfined Photochemical Activity. ChemCatChem, 2015, 7, 3012-3019.	1.8	16
116	Boosting the visible-light photoactivity of Bi2WO6 using acidic carbon additives. Applied Catalysis A: General, 2015, 505, 467-477.	2.2	16
117	Carbon Black as Conductive Additive and Structural Director of Porous Carbon Gels. Materials, 2020, 13, 217.	1.3	16
118	Highly mesoporous carbons obtained using a dynamic template method. Microporous and Mesoporous Materials, 2006, 89, 315-324.	2.2	15
119	Novel opportunities for nanoporous carbons as energetic materials. Carbon, 2020, 164, 129-132.	5.4	15
120	Effect of the irradiation wavelength on the performance of nanoporous carbon as an additive to TiO2. Applied Catalysis A: General, 2015, 507, 91-98.	2.2	14
121	On the correlation between the porous structure and the electrochemical response of powdered and monolithic carbon aerogels as electrodes for capacitive deionization. Journal of Solid State Chemistry, 2016, 242, 21-28.	1.4	14
122	Characterization of the different fractions obtained from the pyrolysis of rope industry waste. Journal of Analytical and Applied Pyrolysis, 2012, 95, 31-37.	2.6	13
123	Fast synthesis of micro/mesoporous xerogels: Textural and energetic assessment. Microporous and Mesoporous Materials, 2015, 209, 2-9.	2.2	13
124	On the Adsorption Kinetics and Equilibrium of Polyaromatic Hydrocarbons from Aqueous Solution. Adsorption Science and Technology, 2011, 29, 467-478.	1.5	12
125	Pt/carbon materials as bi-functional catalysts for n-decane hydroisomerization. Microporous and Mesoporous Materials, 2012, 163, 21-28.	2.2	11
126	Design and development of a controlled pressure/temperature set-up for⟨i⟩in situ⟨/i⟩studies ofÂsolid–gas processes and reactions in a synchrotron X-ray powder diffraction station. Journal of Synchrotron Radiation, 2015, 22, 42-48.	1.0	11

#	Article	IF	Citations
127	Exploring the use of carbon materials as cathodes in electrochemical advanced oxidation processes for the degradation of antibiotics. Journal of Environmental Chemical Engineering, 2022, 10, 107506.	3.3	11
128	Improved phenol adsorption on carbons after mild temperature steam reactivation. Journal of Hazardous Materials, 2009, 166, 1289-1295.	6.5	10
129	A green and fast approach to nanoporous carbons with tuned porosity: UV-assisted condensation of organic compounds at room temperature. Carbon, 2017, 116, 264-274.	5.4	10
130	A comparison of characterization methods based on N2 and CO2 adsorption for the assessment of the pore size distribution of carbons. Studies in Surface Science and Catalysis, 2007, 160, 319-326.	1.5	9
131	Adsorption of Thiocyanate Anions from Aqueous Solution onto Adsorbents of Various Origin. Adsorption Science and Technology, 2010, 28, 705-716.	1.5	9
132	Electrocatalytic activity of Ni-doped nanoporous carbons in the electrooxidation of propargyl alcohol. Carbon, 2014, 73, 291-302.	5.4	9
133	Fabrication of a biocathode for formic acid production upon the immobilization of formate dehydrogenase from Candida boidinii on a nanoporous carbon. Chemosphere, 2022, 291, 133117.	4.2	9
134	Stabilisation of sheep wool fibres under air atmosphere: Study of physicochemical changes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 268, 115115.	1.7	8
135	Photocatalytic Performance of Carbon-Containing CuMo-Based Catalysts under Sunlight Illumination. Catalysts, 2022, 12, 46.	1.6	8
136	Photochemical Behavior of Carbon Adsorbents. , 2012, , 521-547.		7
137	Carbon Materials as Additives to WO3 for an Enhanced Conversion of Simulated Solar Light. Frontiers in Materials, 2016, 3, .	1.2	7
138	Tuning the Photocatalytic Activity and Optical Properties of Mesoporous TiO ₂ Spheres by a Carbon Scaffold. Journal of Catalysts, 2013, 2013, 1-9.	0.5	7
139	Performance of a C-containing Cu-based photocatalyst for the degradation of tartrazine: Comparison of performance in a slurry and CPC photoreactor under artificial and natural solar light. Journal of Colloid and Interface Science, 2022, 623, 646-659.	5.0	7
140	On the use of diatomite as antishrinkage additive in the preparation of monolithic carbon aerogels. Carbon, 2016, 98, 280-284.	5.4	6
141	Carbon materials based on screen-printing electrochemical platforms in biosensing applications. SPR Electrochemistry, 2015, , 133-169.	0.7	6
142	Designing micro- and mesoporous carbon networks by chemical activation of organic resins. Adsorption, 2017, 23, 303-312.	1.4	5
143	The Role of Carbon on Copper–Carbon Composites for the Electrooxidation of Alcohols in an Alkaline Medium. Journal of Carbon Research, 2017, 3, 36.	1.4	5
144	Photoelectrochemical Response of WO3/Nanoporous Carbon Anodes for Photocatalytic Water Oxidation. Journal of Carbon Research, 2018, 4, 45.	1.4	5

#	Article	IF	CITATIONS
145	Insights on the Use of Carbon Additives as Promoters of the Visible-Light Photocatalytic Activity of Bi2WO6. Materials, 2019, 12, 385.	1.3	5
146	Carbon-Based Sorbent Coatings for the Determination of Pharmaceutical Compounds by Bar Adsorptive Microextraction. ACS Applied Bio Materials, 2020, 3, 2078-2091.	2.3	5
147	Surface Modification of a Nanoporous Carbon Photoanode upon Irradiation. Molecules, 2016, 21, 1611.	1.7	4
148	The ability of a fibrous titanium oxophosphate for nitrogen-adsorption above room temperature. Chemical Communications, 2017, 53, 2249-2251.	2.2	4
149	Solventless Olefin Epoxidation Using a Mo–Loaded Sisal Derived Acidâ€Char Catalyst. ChemistrySelect, 2018, 3, 10357-10363.	0.7	3
150	Effect of confinement of horse heart cytochrome c and formate dehydrogenase from Candida boidinii on mesoporous carbons on their catalytic activity. Bioprocess and Biosystems Engineering, 2021, 44, 1699-1710.	1.7	3
151	Chemically modified nanoporous carbons obtained using template carbonization method. Studies in Surface Science and Catalysis, 2007, 160, 559-566.	1.5	2
152	Nanoporous Carbons with Tuned Porosity. Green Energy and Technology, 2019, , 91-135.	0.4	2
153	Reply to Comments by Yuh-Shan Ho on "Kinetics of naphthalene adsorption on an activated carbon: Comparison between aqueous and organic media―[Chemosphere 76 (4) (2009) 433–438]. Chemosphere, 2009, 77, 1454.	4.2	1
154	Surface Chemistry of Green Carbons. , 2014, , 1-33.		1
155	Thermochemical Conversion of Bean Pods to Carbon Materials and Gas. High Temperature Materials and Processes, 2008, 27, .	0.6	0
156	Editorial special issue IBA-3. Adsorption, 2020, 26, 151-152.	1.4	0