Elke Eichelmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2163140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel approach to partitioning evapotranspiration into evaporation and transpiration in flooded ecosystems. Global Change Biology, 2022, 28, 990-1007.	4.2	9
2	The challenge of "Depeche Mode―in the fashion industry – Does the industry have the capacity to become sustainable through circular economic principles, a scoping review. Sustainable Environment, 2021, 7, .	1.2	6
3	FLUXNET-CH ₄ : a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.	3.7	79
4	Multiscale Assessment of Agricultural Consumptive Water Use in California's Central Valley. Water Resources Research, 2021, 57, e2020WR028876.	1.7	4
5	Effect of Drought-Induced Salinization on Wetland Methane Emissions, Gross Ecosystem Productivity, and Their Interactions. Ecosystems, 2020, 23, 675-688.	1.6	30
6	Transpiration and evaporation in a Californian oak-grass savanna: Field measurements and partitioning model results. Agricultural and Forest Meteorology, 2020, 295, 108204.	1.9	20
7	Outgoing Nearâ€Infrared Radiation From Vegetation Scales With Canopy Photosynthesis Across a Spectrum of Function, Structure, Physiological Capacity, and Weather. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005534.	1.3	73
8	Impact of Insolation Data Source on Remote Sensing Retrievals of Evapotranspiration over the California Delta. Remote Sensing, 2019, 11, 216.	1.8	22
9	Assessing the carbon and climate benefit of restoring degraded agricultural peat soils to managed wetlands. Agricultural and Forest Meteorology, 2019, 268, 202-214.	1.9	73
10	Soil properties and sediment accretion modulate methane fluxes from restored wetlands. Global Change Biology, 2018, 24, 4107-4121.	4.2	34
11	The effect of land cover type and structure on evapotranspiration from agricultural and wetland sites in the Sacramento–San Joaquin River Delta, California. Agricultural and Forest Meteorology, 2018, 256-257, 179-195.	1.9	72
12	Field-Scale Assessment of Land and Water Use Change over the California Delta Using Remote Sensing. Remote Sensing, 2018, 10, 889.	1.8	79
13	A Unique Combination of Aerodynamic and Surface Properties Contribute to Surface Cooling in Restored Wetlands of the Sacramento‣an Joaquin Delta, California. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2072-2090.	1.3	29
14	A Biogeochemical Compromise: The High Methane Cost of Sequestering Carbon in Restored Wetlands. Geophysical Research Letters, 2018, 45, 6081-6091.	1.5	75
15	Evaluation of a hierarchy of models reveals importance of substrate limitation for predicting carbon dioxide and methane exchange in restored wetlands. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 145-167.	1.3	42
16	Evaluation of Density Corrections to Methane Fluxes Measured by Open-Path Eddy Covariance over Contrasting Landscapes. Boundary-Layer Meteorology, 2017, 165, 197-210.	1.2	16
17	Carbon dioxide exchange dynamics over a mature switchgrass stand. GCB Bioenergy, 2016, 8, 428-442.	2.5	17
18	Comparison of carbon budget, evapotranspiration, and albedo effect between the biofuel crops switchgrass and corn. Agriculture, Ecosystems and Environment, 2016, 231, 271-282.	2.5	31

#	Article	IF	CITATIONS
19	Evapotranspiration, water use efficiency, and energy partitioning of a mature switchgrass stand. Agricultural and Forest Meteorology, 2016, 217, 108-119.	1.9	47
20	Verification of greenhouse gas emission reductions: the prospect of atmospheric monitoring in polluted areas. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 1906-1924.	1.6	58