
Qinfang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2162894/publications.pdf Version: 2024-02-01

OINFANC LUI

#	Article	lF	CITATIONS
1	Hydrophobic Residues at the Intracellular Domain of the M2 Protein Play an Important Role in Budding and Membrane Integrity of Influenza Virus. Journal of Virology, 2022, 96, e0037322.	3.4	2
2	N-Linked Glycosylation Plays an Important Role in Budding of Neuraminidase Protein and Virulence of Influenza Viruses. Journal of Virology, 2021, 95, .	3.4	10
3	Caspase-Dependent Cleavage of DDX21 Suppresses Host Innate Immunity. MBio, 2021, 12, e0100521.	4.1	13
4	Replication and virulence of chimeric bat influenza viruses in mammalian and avian cells and in mice. Microbial Pathogenesis, 2021, 157, 104992.	2.9	2
5	Vaccination with inactivated virus against low pathogenic avian influenza subtype H9N2 does not prevent virus transmission in chickens. Journal of Virus Eradication, 2021, 7, 100055.	0.5	6
6	Key Amino Acids of M1-41 and M2-27 Determine Growth and Pathogenicity of Chimeric H17 Bat Influenza Virus in Cells and in Mice. Journal of Virology, 2021, 95, e0101921.	3.4	2
7	Cross-Species Genome-Wide Analysis Reveals Molecular and Functional Diversity of the Unconventional Interferon-ï‰ Subtype. Frontiers in Immunology, 2019, 10, 1431.	4.8	28
8	Limited adaptation of chimeric H9N2 viruses containing internal genes from bat influenza viruses in chickens. Veterinary Microbiology, 2019, 232, 151-155.	1.9	5
9	Virus survival and fitness when multiple genotypes and subtypes of influenza A viruses exist and circulate in swine. Virology, 2019, 532, 30-38.	2.4	8
10	H9N2 Viruses Isolated From Mammals Replicated in Mice at Higher Levels Than Avian-Origin Viruses. Frontiers in Microbiology, 2019, 10, 416.	3.5	5
11	Genome-wide analysis of differentially expressed genes and the modulation of PEDV infection in Vero E6 cells. Microbial Pathogenesis, 2018, 117, 247-254.	2.9	23
12	Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1635-1640.	7.1	70
13	H9N2 influenza virus isolated from minks has enhanced virulence in mice. Transboundary and Emerging Diseases, 2018, 65, 904-910.	3.0	15
14	Appropriate dose of <i>Lactobacillus buchneri</i> supplement improves intestinal microbiota and prevents diarrhoea in weaning Rex rabbits. Beneficial Microbes, 2018, 9, 401-416.	2.4	9
15	Impacts of different expressions of PA-X protein on 2009 pandemic H1N1 virus replication, pathogenicity and host immune responses. Virology, 2017, 504, 25-35.	2.4	36
16	H7N9 avian influenza A virus in China: a short report on its circulation, drug resistant mutants and novel antiviral drugs. Expert Review of Anti-Infective Therapy, 2017, 15, 723-727.	4.4	13
17	Reduction of infection by inhibiting mTOR pathway is associated with reversed repression of type I interferon by porcine reproductive and respiratory syndrome virus. Journal of General Virology, 2017, 98, 1316-1328.	2.9	20
18	Phylogenetic analysis and pathogenicity of H3 subtype avian influenza viruses isolated from live poultry markets in China. Scientific Reports, 2016, 6, 27360.	3.3	22

QINFANG LIU

#	Article	IF	CITATIONS
19	Development of a sheep challenge model for Rift Valley fever. Virology, 2016, 489, 128-140.	2.4	38
20	A Single Mutation at Position 190 in Hemagglutinin Enhances Binding Affinity for Human Type Sialic Acid Receptor and Replication of H9N2 Avian Influenza Virus in Mice. Journal of Virology, 2016, 90, 9806-9825.	3.4	67
21	α-Galactosylceramide protects swine against influenza infection when administered as a vaccine adjuvant. Scientific Reports, 2016, 6, 23593.	3.3	39
22	Characterizations of H4 avian influenza viruses isolated from ducks in live poultry markets and farm in Shanghai. Scientific Reports, 2016, 6, 37843.	3.3	17
23	Expansion of amphibian intronless interferons revises the paradigm for interferon evolution and functional diversity. Scientific Reports, 2016, 6, 29072.	3.3	61
24	Protective efficacy of an inactivated vaccine against H9N2 avian influenza virus in ducks. Virology Journal, 2015, 12, 143.	3.4	6
25	Pathogenicity and Transmissibility of Novel Reassortant H3N2 Influenza Viruses with 2009 Pandemic H1N1 Genes in Pigs. Journal of Virology, 2015, 89, 2831-2841.	3.4	36
26	Newcastle Disease Virus-Vectored H7 and H5 Live Vaccines Protect Chickens from Challenge with H7N9 or H5N1 Avian Influenza Viruses. Journal of Virology, 2015, 89, 7401-7408.	3.4	49
27	Domestic Pigs Are Susceptible to Infection with Influenza B Viruses. Journal of Virology, 2015, 89, 4818-4826.	3.4	73
28	Characterization of Uncultivable Bat Influenza Virus Using a Replicative Synthetic Virus. PLoS Pathogens, 2014, 10, e1004420.	4.7	58
29	Emergence of a novel drug resistant H7N9 influenza virus: evidence based clinical potential of a natural IFN-α for infection control and treatment. Expert Review of Anti-Infective Therapy, 2014, 12, 165-169.	4.4	17
30	A crucial role of N-terminal domain of influenza A virus M1 protein in interaction with swine importin α1 protein. Virus Genes, 2014, 49, 157-162.	1.6	2
31	Analysis of Recombinant H7N9 Wild-Type and Mutant Viruses in Pigs Shows that the Q226L Mutation in HA Is Important for Transmission. Journal of Virology, 2014, 88, 8153-8165.	3.4	52
32	In vitro and in vivo replication of influenza A H1N1 WSN33 viruses with different M1 proteins. Journal of General Virology, 2013, 94, 884-895.	2.9	3
33	Combination of PB2 271A and SR Polymorphism at Positions 590/591 Is Critical for Viral Replication and Virulence of Swine Influenza Virus in Cultured Cells and <i>In Vivo</i> . Journal of Virology, 2012, 86, 1233-1237.	3.4	69
34	Pathogenicity and transmissibility of reassortant H9 influenza viruses with genes from pandemic H1N1 virus. Journal of General Virology, 2012, 93, 2337-2345.	2.9	36
35	The neuraminidase and matrix genes of the 2009 pandemic influenza H1N1 virus cooperate functionally to facilitate efficient replication and transmissibility in pigs. Journal of General Virology, 2012, 93, 1261-1268.	2.9	36
36	Emergence of novel reassortant H3N2 swine influenza viruses with the 2009 pandemic H1N1 genes in the United States. Archives of Virology, 2012, 157, 555-562.	2.1	63

QINFANG LIU

#	Article	IF	CITATIONS
37	Isolation and characterization of a reovirus causing spleen necrosis in Pekin ducklings. Veterinary Microbiology, 2011, 148, 200-206.	1.9	61
38	Characterization of a highly pathogenic avian influenza H5N1 clade 2.3.4 virus isolated from a tree sparrow. Virus Research, 2010, 147, 25-29.	2.2	28
39	Full Genome Sequences of Two Reticuloendotheliosis Viruses Contaminating Commercial Vaccines. Avian Diseases, 2009, 53, 341-346.	1.0	31