List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2162585/publications.pdf Version: 2024-02-01

	26610	19726
14,595	56	117
citations	h-index	g-index
175	175	15686
docs citations	times ranked	citing authors
	citations 175	14,595 56 citations h-index 175 175

RDUCE LEVY

#	Article	lF	CITATIONS
1	Association of clonal hematopoiesis with chronic obstructive pulmonary disease. Blood, 2022, 139, 357-368.	0.6	106
2	Mucus Plugs Persist in Asthma, and Changes in Mucus Plugs Associate with Changes in Airflow over Time. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1036-1045.	2.5	39
3	Asthma Susceptibility Gene <i>ORMDL3</i> Promotes Autophagy in Human Bronchial Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 661-670.	1.4	6
4	Cromolyn Sodium differentially regulates human mast cell and mouse leukocyte responses to control allergic inflammation. Pharmacological Research, 2022, 178, 106172.	3.1	9
5	A targetable â€~rogue' neutrophil-subset, [CD11b+DEspR+] immunotype, is associated with severity and mortality in acute respiratory distress syndrome (ARDS) and COVID-19-ARDS. Scientific Reports, 2022, 12, 5583.	1.6	9
6	Specialized pro-resolving mediators in respiratory diseases. Current Opinion in Clinical Nutrition and Metabolic Care, 2022, 25, 67-74.	1.3	15
7	Quantitative CT Characteristics of Cluster Phenotypes in the Severe Asthma Research Program Cohorts. Radiology, 2022, 304, 450-459.	3.6	3
8	Allergic asthma is a risk factor for human cardiovascular diseases. , 2022, 1, 417-430.		8
9	The Impact of Insulin Resistance on Loss of Lung Function and Response to Treatment in Asthma. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 1096-1106.	2.5	28
10	Responsiveness to Parenteral Corticosteroids and Lung Function Trajectory in Adults with Moderate-to-Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 841-852.	2.5	14
11	A Treacherous Course. New England Journal of Medicine, 2021, 384, 860-865.	13.9	0
12	Mixed Sputum Granulocyte Longitudinal Impact on Lung Function in the Severe Asthma Research Program. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 882-892.	2.5	39
13	Genetic and non-genetic factors affecting the expression of COVID-19-relevant genes in the large airway epithelium. Genome Medicine, 2021, 13, 66.	3.6	21
14	Lipid-Derived Mediators are Pivotal to Leukocyte and Lung Cell Responses in Sepsis and ARDS. Cell Biochemistry and Biophysics, 2021, 79, 449-459.	0.9	3
15	Inhibition of inflammatory pain and cough by a novel charged sodium channel blocker. British Journal of Pharmacology, 2021, 178, 3905-3923.	2.7	19
16	Fully Automated, Sample-to-Answer Leukocyte Functional Assessment Platform for Continuous Sepsis Monitoring via Microliters of Blood. ACS Sensors, 2021, 6, 2747-2756.	4.0	12
17	Plasma from patients with bacterial sepsis or severe COVID-19 induces suppressive myeloid cell production from hematopoietic progenitors in vitro. Science Translational Medicine, 2021, 13, .	5.8	64
18	FcεR1-expressing nociceptors trigger allergic airway inflammation. Journal of Allergy and Clinical Immunology, 2021, 147, 2330-2342.	1.5	36

#	Article	IF	CITATIONS
19	Inflammation resolution circuits are uncoupled in acute sepsis and correlate with clinical severity. JCI Insight, 2021, 6, .	2.3	4
20	Protectins PCTR1 and PD1 Reduce Viral Load and Lung Inflammation During Respiratory Syncytial Virus Infection in Mice. Frontiers in Immunology, 2021, 12, 704427.	2.2	21
21	Benefits of Airway Androgen Receptor Expression in Human Asthma. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 285-293.	2.5	26
22	Anti-inflammatory actions of aspirin-triggered resolvin D1 (AT-RvD1) in bronchial epithelial cells infected with Cryptococcus neoformans. Inflammopharmacology, 2021, 29, 1603-1612.	1.9	0
23	Cysteinyl maresins regulate the prophlogistic lung actions of cysteinyl leukotrienes. Journal of Allergy and Clinical Immunology, 2020, 145, 335-344.	1.5	38
24	Investigation of the relationship between IL-6 and type 2 biomarkers in patients with severe asthma. Journal of Allergy and Clinical Immunology, 2020, 145, 430-433.	1.5	38
25	Severe asthma during childhood and adolescence: AÂlongitudinal study. Journal of Allergy and Clinical Immunology, 2020, 145, 140-146.e9.	1.5	45
26	Development and initial validation of the Asthma Severity Scoring System (ASSESS). Journal of Allergy and Clinical Immunology, 2020, 145, 127-139.	1.5	19
27	The Atlas of Inflammation Resolution (AIR). Molecular Aspects of Medicine, 2020, 74, 100894.	2.7	110
28	Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature, 2020, 586, 763-768.	13.7	376
29	Fully-automated and field-deployable blood leukocyte separation platform using multi-dimensional double spiral (MDDS) inertial microfluidics. Lab on A Chip, 2020, 20, 3612-3624.	3.1	39
30	Evidence for Exacerbation-Prone Asthma and Predictive Biomarkers of Exacerbation Frequency. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 973-982.	2.5	105
31	<i>HSD3B1</i> genotype identifies glucocorticoid responsiveness in severe asthma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2187-2193.	3.3	27
32	Identifying Clinical Research Priorities in Adult Pulmonary and Critical Care. NHLBI Working Group Report. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 511-523.	2.5	40
33	Human NK Cell Cytoskeletal Dynamics and Cytotoxicity Are Regulated by LIM Kinase. Journal of Immunology, 2020, 205, 801-810.	0.4	9
34	Baseline sputum eosinophilÂ+ neutrophil subgroups' clinical characteristics and longitudinal trajectories for NHLBI Severe Asthma Research Program (SARP 3) cohort. Journal of Allergy and Clinical Immunology, 2020, 146, 222-226.	1.5	25
35	An immune-cell signature of bacterial sepsis. Nature Medicine, 2020, 26, 333-340.	15.2	261
36	Vagal sensory neurons drive mucous cell metaplasia. Journal of Allergy and Clinical Immunology, 2020, 145, 1693-1696.e4.	1.5	17

BRUCE LEVY

#	Article	IF	CITATIONS
37	Parroting Lymphoma. New England Journal of Medicine, 2020, 383, 1376-1381.	13.9	1
38	Plasma Levels of Proresolving and Prophlogistic Lipid Mediators: Association With Severity of Respiratory Failure and Mortality in Acute Respiratory Distress Syndrome. , 2020, 2, e0241.		11
39	Calcitonin Gene-Related Peptide Negatively Regulates Alarmin-Driven Type 2 Innate Lymphoid Cell Responses. Immunity, 2019, 51, 709-723.e6.	6.6	144
40	Leukocyte function assessed via serial microlitre sampling of peripheral blood from sepsis patients correlates with disease severity. Nature Biomedical Engineering, 2019, 3, 961-973.	11.6	39
41	1830. Single-cell Transcriptional Profiling Reveals an Immune Cell State Signature of Bacterial Sepsis. Open Forum Infectious Diseases, 2019, 6, S42-S42.	0.4	1
42	A Model of Self-limited Acute Lung Injury by Unilateral Intra-bronchial Acid Instillation. Journal of Visualized Experiments, 2019, , .	0.2	5
43	The Element of Surprise. New England Journal of Medicine, 2019, 381, 1365-1371.	13.9	4
44	Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1076-1085.	2.5	165
45	The role of the 17q21 genotype in the prevention of early childhood asthma and recurrent wheeze by vitamin D. European Respiratory Journal, 2019, 54, 1900761.	3.1	29
46	Facing Uncertainty. New England Journal of Medicine, 2019, 381, 2253-2259.	13.9	3
47	Non-type 2 inflammation in severe asthma is propelled by neutrophil cytoplasts and maintained by defective resolution. Allergology International, 2019, 68, 143-149.	1.4	26
48	Racial disparities in asthma-related health care use in the National Heart, Lung, and Blood Institute's Severe Asthma Research Program. Journal of Allergy and Clinical Immunology, 2019, 143, 2052-2061.	1.5	65
49	Refractory airway type 2 inflammation in a large subgroup of asthmatic patients treated with inhaled corticosteroids. Journal of Allergy and Clinical Immunology, 2019, 143, 104-113.e14.	1.5	135
50	15-epi-Lipoxin A4, Resolvin D2, and Resolvin D3 Induce NF-κB Regulators in Bacterial Pneumonia. Journal of Immunology, 2018, 200, 2757-2766.	0.4	63
51	Phospholipase D isoforms differentially regulate leukocyte responses to acute lung injury. Journal of Leukocyte Biology, 2018, 103, 919-932.	1.5	24
52	Towards targeting resolution pathways of airway inflammation in asthma. , 2018, 186, 98-113.		76
53	Future Research Directions in Pneumonia. NHLBI Working Group Report. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 256-263.	2.5	54
54	Augmented Responses to Ozone in Obese Mice Require IL-17A and Gastrin-Releasing Peptide. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 341-351.	1.4	32

#	Article	IF	CITATIONS
55	An epoxide hydrolase secreted by <i>Pseudomonas aeruginosa</i> decreases mucociliary transport and hinders bacterial clearance from the lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L150-L156.	1.3	27
56	Leukocyte CD300a Contributes to the Resolution of Murine Allergic Inflammation. Journal of Immunology, 2018, 201, 2998-3005.	0.4	20
57	Complements from the Lung. New England Journal of Medicine, 2018, 379, 1767-1773.	13.9	1
58	PGE ₂ production at sites of tissue injury promotes an anti-inflammatory neutrophil phenotype and determines the outcome of inflammation resolution in vivo. Science Advances, 2018, 4, eaar8320.	4.7	165
59	Early Intravascular Events Are Associated with Development of Acute Respiratory Distress Syndrome. A Substudy of the LIPS-A Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1575-1585.	2.5	39
60	Specialized Proresolving Mediators in Innate and Adaptive Immune Responses in Airway Diseases. Physiological Reviews, 2018, 98, 1335-1370.	13.1	70
61	Neutrophil cytoplasts induce T _H 17 differentiation and skew inflammation toward neutrophilia in severe asthma. Science Immunology, 2018, 3, .	5.6	157
62	Effects of endogenous sex hormones on lung function and symptom control in adolescents with asthma. BMC Pulmonary Medicine, 2018, 18, 58.	0.8	74
63	Baseline Features of the Severe Asthma Research Program (SARP III) Cohort: Differences with Age. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 545-554.e4.	2.0	210
64	Flexibility and strength training in asthma: A pilot study. Journal of Asthma, 2018, 55, 1376-1383.	0.9	5
65	Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. Journal of Clinical Investigation, 2018, 128, 997-1009.	3.9	337
66	Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. Journal of Clinical Investigation, 2018, 128, 2657-2669.	3.9	858
67	Natural killer cell–mediated inflammation resolution is disabled in severe asthma. Science Immunology, 2017, 2, .	5.6	76
68	Human Sepsis Eicosanoid and Proresolving Lipid Mediator Temporal Profiles: Correlations With Survival and Clinical Outcomes. Critical Care Medicine, 2017, 45, 58-68.	0.4	160
69	Bronchoprotective mechanisms for specialized pro-resolving mediators in the resolution of lung inflammation. Molecular Aspects of Medicine, 2017, 58, 44-56.	2.7	40
70	Brain MRS glutamine as a biomarker to guide therapy of hyperammonemic coma. Molecular Genetics and Metabolism, 2017, 121, 9-15.	0.5	8
71	<i>Pseudomonas aeruginosa</i> sabotages the generation of host proresolving lipid mediators. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 136-141.	3.3	73
72	Effects of Age and Disease Severity on Systemic Corticosteroid Responses in Asthma. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1439-1448.	2.5	87

#	Article	IF	CITATIONS
73	The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature, 2017, 549, 351-356.	13.7	460
74	Inflammatory and Comorbid Features of Patients with Severe Asthma and Frequent Exacerbations. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 302-313.	2.5	346
75	ALX receptor ligands define a biochemical endotype for severe asthma. JCI Insight, 2017, 2, .	2.3	29
76	Fish Oil Supplementation in Pregnancy. New England Journal of Medicine, 2016, 375, 2599-2601.	13.9	14
77	Effects of aspirin-triggered resolvin D1 on peripheral blood mononuclear cells from patients with Chagas' heart disease. European Journal of Pharmacology, 2016, 777, 26-32.	1.7	10
78	The anti-inflammatory and pro-resolution effects of aspirin-triggered RvD1 (AT-RvD1) on peripheral blood mononuclear cells from patients with severe asthma. International Immunopharmacology, 2016, 35, 142-148.	1.7	21
79	Resolvin D3 and Aspirin-Triggered Resolvin D3 Are Protective for Injured Epithelia. American Journal of Pathology, 2016, 186, 1801-1813.	1.9	47
80	Aspirin and Acute Respiratory Distress Syndrome—Reply. JAMA - Journal of the American Medical Association, 2016, 316, 1318.	3.8	0
81	Monitoring sepsis using electrical cell profiling. Lab on A Chip, 2016, 16, 4333-4340.	3.1	35
82	Tip of the Tongue. New England Journal of Medicine, 2016, 375, 880-886.	13.9	3
83	Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respiratory Medicine,the, 2016, 4, 574-584.	5.2	375
84	Asthma Associates With Human Abdominal Aortic Aneurysm and Rupture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 570-578.	1.1	20
85	Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nature Reviews Immunology, 2016, 16, 51-67.	10.6	479
86	Allergic Lung Inflammation Aggravates Angiotensin II–Induced Abdominal Aortic Aneurysms in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 69-77.	1.1	29
87	DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation. European Journal of Pharmacology, 2016, 785, 144-155.	1.7	198
88	Recent advances in understanding and treating ARDS. F1000Research, 2016, 5, 725.	0.8	31
89	AT-RvD1 Modulates CCL-2 and CXCL-8 Production and NF-ήB, STAT-6, SOCS1, and SOCS3 Expression on Bronchial Epithelial Cells Stimulated with IL-4. BioMed Research International, 2015, 2015, 1-8.	0.9	19
90	Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation. Neuron, 2015, 87, 341-354.	3.8	299

#	Article	IF	CITATIONS
91	Human Mesenchymal Stem (Stromal) Cells Promote the Resolution of Acute Lung Injury in Part through Lipoxin A4. Journal of Immunology, 2015, 195, 875-881.	0.4	132
92	Future Research Directions in Asthma. An NHLBI Working Group Report. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 1366-1372.	2.5	84
93	Cutting Edge: Maresin-1 Engages Regulatory T Cells To Limit Type 2 Innate Lymphoid Cell Activation and Promote Resolution of Lung Inflammation. Journal of Immunology, 2015, 194, 863-867.	0.4	155
94	Maresin 1 biosynthesis during platelet–neutrophil interactions is organ-protective. Proceedings of the United States of America, 2014, 111, 16526-16531.	3.3	144
95	Lipoxin Generation Is Related to Soluble Epoxide Hydrolase Activity in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 886-897.	2.5	73
96	Resolution of Acute Inflammation in the Lung. Annual Review of Physiology, 2014, 76, 467-492.	5.6	246
97	Abstract B09: Aspirin inhibits cyclooxygenase 2-mediated prostaglandin production and tumorigenesisin a preclinical model of tuberous sclerosis complex. , 2014, , .		0
98	15â€Epiâ€lipoxin A ₄ inhibits human neutrophil superoxide anion generation by regulating polyisoprenyl diphosphate phosphatase 1. FASEB Journal, 2013, 27, 2733-2741.	0.2	28
99	Lipoxin A ₄ : a new direction in asthma therapy?. Expert Review of Clinical Immunology, 2013, 9, 491-493.	1.3	14
100	Exhaled breath condensate eicosanoid levels associate with asthma and its severity. Journal of Allergy and Clinical Immunology, 2013, 132, 547-553.	1.5	89
101	Lipoxin A ₄ Regulates Natural Killer Cell and Type 2 Innate Lymphoid Cell Activation in Asthma. Science Translational Medicine, 2013, 5, 174ra26.	5.8	395
102	Identification of endogenous proâ€resolving mechanisms in a murine model of cryptococcal pneumonia. FASEB Journal, 2013, 27, 645.12.	0.2	1
103	Lipoxins control neutrophil superoxide anion production by regulation of polyisoprenyl diphosphate phosphatase 1 activity. FASEB Journal, 2013, 27, 137.2.	0.2	0
104	Differential expression of proâ€inflammatory and proâ€resolving lipid signaling genes in ARDS. FASEB Journal, 2013, 27, 649.3.	0.2	0
105	Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 356-362.	2.5	242
106	Resolvin D1 and Resolvin E1 Promote the Resolution of Allergic Airway Inflammation via Shared and Distinct Molecular Counter-Regulatory Pathways. Frontiers in Immunology, 2012, 3, 390.	2.2	47
107	Resolution of Inflammation in Asthma. Clinics in Chest Medicine, 2012, 33, 559-570.	0.8	46
108	Resolvin D1 and Aspirin-Triggered Resolvin D1 Promote Resolution of Allergic Airways Responses. Journal of Immunology, 2012, 189, 1983-1991.	0.4	204

#	Article	IF	CITATIONS
109	NK Cells Are Effectors for Resolvin E1 in the Timely Resolution of Allergic Airway Inflammation. Journal of Immunology, 2011, 186, 6129-6135.	0.4	126
110	The endogenous pro-resolving mediators lipoxin A4 and resolvin E1 preserve organ function in allograft rejection. Prostaglandins Leukotrienes and Essential Fatty Acids, 2011, 84, 43-50.	1.0	43
111	Resolvins: Natural agonists for resolution of pulmonary inflammation. Progress in Lipid Research, 2011, 50, 75-88.	5.3	99
112	Resolution of Tollâ€like receptor 4â€mediated acute lung injury is linked to eicosanoids and suppressor of cytokine signaling 3. FASEB Journal, 2011, 25, 1827-1835.	0.2	31
113	Resolvins and protectins: Natural pharmacophores for resolution biology. Prostaglandins Leukotrienes and Essential Fatty Acids, 2010, 82, 327-332.	1.0	91
114	The Anti-Inflammatory and Proresolving Mediator Resolvin E1 Protects Mice from Bacterial Pneumonia and Acute Lung Injury. Journal of Immunology, 2010, 184, 836-843.	0.4	204
115	Resolvins and protectins: mediating solutions to inflammation. British Journal of Pharmacology, 2009, 158, 960-971.	2.7	242
116	Activation of Polyisoprenyl Diphosphate Phosphatase 1 Remodels Cellular Presqualene Diphosphate. Biochemistry, 2009, 48, 2997-3004.	1.2	10
117	Resolvin E1 regulates interleukin 23, interferon-γ and lipoxin A4 to promote the resolution of allergic airway inflammation. Nature Immunology, 2008, 9, 873-879.	7.0	384
118	Lipoxins, resolvins and protectins: new leads for the treatment of asthma. Expert Opinion on Drug Discovery, 2008, 3, 1209-1222.	2.5	10
119	Chemical Mediators and the Resolution of Airway Inflammation. Allergology International, 2008, 57, 299-305.	1.4	9
120	Airway Lipoxin A ₄ Generation and Lipoxin A ₄ Receptor Expression Are Decreased in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 574-582.	2.5	215
121	Polyisoprenyl Diphosphate Phosphatase 1 Remodels Cellular Presqualene Diphosphate. FASEB Journal, 2008, 22, 479.41.	0.2	0
122	Lipid Mediators as Agonists for the Resolution of Acute Lung Inflammation and Injury. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 201-205.	1.4	67
123	Protectin D1 Is Generated in Asthma and Dampens Airway Inflammation and Hyperresponsiveness. Journal of Immunology, 2007, 178, 496-502.	0.4	311
124	Lipoxin A ₄ stable analogs reduce allergic airway responses <i>via</i> mechanisms distinct from CysLT1 receptor antagonism. FASEB Journal, 2007, 21, 3877-3884.	0.2	102
125	Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute's Severe Asthma Research Program. Journal of Allergy and Clinical Immunology, 2007, 119, 405-413.	1.5	838
126	Regulation of phosphatidylinositol 3–kinase by polyisoprenyl phosphates in neutrophil-mediated tissue injury. Journal of Experimental Medicine, 2006, 203, 857-863.	4.2	28

#	Article	IF	CITATIONS
127	Identification and Functional Characterization of a Presqualene Diphosphate Phosphatase. Journal of Biological Chemistry, 2006, 281, 9490-9497.	1.6	36
128	Novel polyisoprenyl phosphates block phospholipase D and human neutrophil activation in vitro and murine peritoneal inflammation in vivo. British Journal of Pharmacology, 2005, 146, 344-351.	2.7	29
129	Eicosanoids in scleroderma: Lung disease hangs in the balance. Arthritis and Rheumatism, 2005, 52, 3693-3697.	6.7	0
130	Cyclooxygenase 2 Plays a Pivotal Role in the Resolution of Acute Lung Injury. Journal of Immunology, 2005, 174, 5033-5039.	0.4	260
131	Diminished Lipoxin Biosynthesis in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 824-830.	2.5	230
132	Health Care for Homeless Persons. New England Journal of Medicine, 2004, 350, 2329-2332.	13.9	76
133	Success of prostaglandin E2 in structure-function is a challenge for structure-based therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8609-8611.	3.3	90
134	Lipoxins and Aspirin-Triggered Lipoxins in Airway Responses. Advances in Experimental Medicine and Biology, 2003, 525, 19-23.	0.8	15
135	Exploring new approaches to the treatment of asthma: Potential roles for lipoxins and aspirin-triggered lipid mediators. Drugs of Today, 2003, 39, 373.	2.4	21
136	Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A4. Nature Medicine, 2002, 8, 1018-1023.	15.2	346
137	Lipid mediator class switching during acute inflammation: signals in resolution. Nature Immunology, 2001, 2, 612-619.	7.0	1,229
138	Polyisoprenyl phosphate (PIPP) signaling regulates phospholipase D activity: a â€~stop' signaling switch for aspirinâ€ŧriggered lipoxin A ₄ . FASEB Journal, 1999, 13, 903-911.	0.2	104
139	Polyisoprenyl phosphates: a novel class of intracellular stop signals in neutrophils. Expert Opinion on Therapeutic Targets, 1998, 2, 27-29.	1.0	1
140	Polyisoprenyl phosphates in intracellular signalling. Nature, 1997, 389, 985-990.	13.7	58
141	Agonist-induced lipoxin A4 generation: Detection by a novel lipoxin A4-ELISA. Lipids, 1993, 28, 1047-1053.	0.7	54