Timothy E Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2162575/publications.pdf

Version: 2024-02-01

20797 25770 14,937 312 60 108 citations h-index g-index papers 323 323 323 14389 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Michael addition reactions in macromolecular design for emerging technologies. Progress in Polymer Science, 2006, 31, 487-531.	11.8	928
2	Coumarins in Polymers:  From Light Harvesting to Photo-Cross-Linkable Tissue Scaffolds. Chemical Reviews, 2004, 104, 3059-3078.	23.0	721
3	Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer, 2005, 46, 4799-4810.	1.8	707
4	Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters. Macromolecules, 2004, 37, 1760-1767.	2.2	594
5	Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials, 2017, 140, 170-188.	5.7	339
6	Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer, 2010, 51, 2447-2454.	1.8	333
7	Phospholipid Nonwoven Electrospun Membranes. Science, 2006, 311, 353-355.	6.0	271
8	Designing Imidazole-Based Ionic Liquids and Ionic Liquid Monomers for Emerging Technologies. Polymer Reviews, 2009, 49, 291-314.	5. 3	270
9	Branched polyesters: recent advances in synthesis and performance. Progress in Polymer Science, 2005, 30, 507-539.	11.8	268
10	Thermoreversible Poly(alkyl acrylates) Consisting of Self-Complementary Multiple Hydrogen Bonding. Macromolecules, 2003, 36, 1083-1088.	2.2	262
11	Solution Rheological Behavior and Electrospinning of Cationic Polyelectrolytes. Macromolecules, 2006, 39, 575-583.	2.2	190
12	A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing. Progress in Polymer Science, 2019, 93, 68-95.	11.8	177
13	Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing. Progress in Polymer Science, 2019, 97, 101144.	11.8	169
14	Combinations of Microphase Separation and Terminal Multiple Hydrogen Bonding in Novel Macromolecules. Journal of the American Chemical Society, 2002, 124, 8599-8604.	6.6	147
15	In Situ Photo-Cross-Linking of Cinnamate Functionalized Poly(methyl methacrylate-co-2-hydroxyethyl) Tj ETQq1 1	0,784314 2:2	rgBT /Overl
16	Alkylâ€Substituted <i>N</i> â€Vinylimidazolium Polymerized Ionic Liquids: Thermal Properties and Ionic Conductivities. Macromolecular Chemistry and Physics, 2011, 212, 2522-2528.	1.1	139
17	Influence of self-complementary hydrogen bonding on solution rheology/electrospinning relationships. Polymer, 2004, 45, 8705-8715.	1.8	133
18	3D Printing Allâ€Aromatic Polyimides using Maskâ€Projection Stereolithography: Processing the Nonprocessable. Advanced Materials, 2017, 29, 1701240.	11.1	131

#	Article	IF	Citations
19	Polymerization of A2 with B3 Monomers:  A Facile Approach to Hyperbranched Poly(aryl ester)s. Macromolecules, 2003, 36, 9809-9816.	2.2	128
20	Influence of Polycation Molecular Weight on Poly(2-dimethylaminoethyl methacrylate)-Mediated DNA Delivery In Vitro. Biomacromolecules, 2009, 10, 1244-1252.	2.6	128
21	Beyond Nafion: Charged Macromolecules Tailored for Performance as Ionic Polymer Transducers. Macromolecules, 2008, 41, 7765-7775.	2.2	124
22	Correlating backboneâ€toâ€backbone distance to ionic conductivity in amorphous polymerized ionic liquids. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 338-346.	2.4	122
23	Nucleobase Self-Assembly in Supramolecular Adhesives. Macromolecules, 2012, 45, 805-812.	2.2	119
24	Recent advances in the synthesis and structure–property relationships of ammonium ionenes. Progress in Polymer Science, 2009, 34, 762-782.	11.8	118
25	Supramolecular Triblock Copolymers Containing Complementary Nucleobase Molecular Recognition. Macromolecules, 2007, 40, 6834-6845.	2.2	116
26	Electrospinning functional nanoscale fibers: a perspective for the future. Polymer International, 2008, 57, 385-389.	1.6	109
27	Polymers from Fatty Acids: Poly(ï‰-hydroxyl tetradecanoic acid) Synthesis and Physico-Mechanical Studies. Biomacromolecules, 2011, 12, 3291-3298.	2.6	106
28	Sulfonimide-Containing Triblock Copolymers for Improved Conductivity and Mechanical Performance. Macromolecules, 2015, 48, 4520-4528.	2.2	103
29	A perspective on emerging polymer technologies for bisphenolâ€A replacement. Polymer International, 2012, 61, 1485-1491.	1.6	95
30	3D Printing Phosphonium Ionic Liquid Networks with Mask Projection Microstereolithography. ACS Macro Letters, 2014, 3, 1205-1209.	2.3	91
31	Thermoreversible Polyesters Consisting of Multiple Hydrogen Bonding (MHB). Macromolecules, 2004, 37, 3519-3522.	2.2	90
32	3D Printing Polymers with Supramolecular Functionality for Biological Applications. Biomacromolecules, 2017, 18, 2669-2687.	2.6	90
33	Comparing Ammonium and Phosphonium Polymerized Ionic Liquids: Thermal Analysis, Conductivity, and Morphology. Macromolecular Chemistry and Physics, 2013, 214, 2099-2107.	1.1	87
34	Imidazolium sulfonate-containing pentablock copolymer–ionic liquid membranes for electroactive actuators. Journal of Materials Chemistry, 2012, 22, 13473.	6.7	86
35	Phosphonium-Containing Polyelectrolytes for Nonviral Gene Delivery. Biomacromolecules, 2012, 13, 231-238.	2.6	85
36	Phosphonium-Containing ABA Triblock Copolymers: Controlled Free Radical Polymerization of Phosphonium Ionic Liquids. Macromolecules, 2011, 44, 6509-6517.	2.2	84

#	Article	IF	CITATIONS
37	Electrospinning of linear and highly branched segmented poly(urethane urea)s. Polymer, 2005, 46, 2011-2015.	1.8	82
38	Synthesis and Characterization of Novel Complementary Multiple-Hydrogen Bonded (CMHB) Macromolecules via a Michael Addition. Macromolecules, 2002, 35, 8745-8750.	2.2	81
39	Synthesis of imidazolium ABA triblock copolymers for electromechanical transducers. Polymer, 2012, 53, 3677-3686.	1.8	80
40	<i>110th Anniversary</i> i>: Vat Photopolymerization-Based Additive Manufacturing: Current Trends and Future Directions in Materials Design. Industrial & Engineering Chemistry Research, 2019, 58, 15109-15118.	1.8	80
41	Synthesis of star-shaped polystyrenes via nitroxide-mediated stable free-radical polymerization. Journal of Polymer Science Part A, 2001, 39, 216-223.	2.5	79
42	3D Printing All-Aromatic Polyimides Using Stereolithographic 3D Printing of Polyamic Acid Salts. ACS Macro Letters, 2018, 7, 493-497.	2.3	79
43	Model analysis of feedstock behavior in fused filament fabrication: Enabling rapid materials screening. Polymer, 2018, 152, 51-61.	1.8	77
44	Synthesis and Morphology of Segmented Poly(tetramethylene oxide)-Based Polyurethanes Containing Phosphonium Salts. Macromolecules, 2008, 41, 9072-9079.	2.2	76
45	Synthesis and characterization of poly(2-ethylhexyl methacrylate) copolymers containing pendant, self-complementary multiple-hydrogen-bonding sites. Journal of Polymer Science Part A, 2005, 43, 4618-4631.	2.5	74
46	Phosphonium cation-containing polymers: From ionic liquids to polyelectrolytes. Polymer, 2014, 55, 3298-3304.	1.8	74
47	Non-isocyanate poly(amide-hydroxyurethane)s from sustainable resources. Green Chemistry, 2016, 18, 4667-4681.	4.6	74
48	Amide-containing segmented copolymers. Progress in Polymer Science, 2015, 45, 1-22.	11.8	73
49	Phosphonium-Containing Diblock Copolymers for Enhanced Colloidal Stability and Efficient Nucleic Acid Delivery. Biomacromolecules, 2012, 13, 2439-2445.	2.6	72
50	Tailoring Charge Density and Hydrogen Bonding of Imidazolium Copolymers for Efficient Gene Delivery. Biomacromolecules, 2011, 12, 2243-2250.	2.6	70
51	Photoreversible Chain Extension of Poly(ethylene glycol). Macromolecular Chemistry and Physics, 2004, 205, 715-723.	1.1	69
52	Synthesis and Characterization of Poly(ethylene glycol)â^'Glutathione Conjugate Self-Assembled Nanoparticles for Antioxidant Delivery. Biomacromolecules, 2009, 10, 155-161.	2.6	69
53	Synthesis of Imidazolium-Containing ABA Triblock Copolymers: Role of Charge Placement, Charge Density, and Ionic Liquid Incorporation. Macromolecules, 2012, 45, 4749-4757.	2.2	69
54	Ultraviolet-Assisted Direct Ink Write to Additively Manufacture All-Aromatic Polyimides. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34828-34833.	4.0	69

#	Article	IF	Citations
55	Tailoring the Degree of Branching: Preparation of Poly(ether ester)s via Copolymerization of Poly(ethylene glycol) Oligomers (A2) and 1,3,5-Benzenetricarbonyl Trichloride (B3). Macromolecules, 2005, 38, 3246-3254.	2.2	68
56	Influence of Random Branching on Multiple Hydrogen Bonding in Poly(alkyl methacrylate)s. Macromolecules, 2005, 38, 6015-6023.	2.2	65
57	Polymer processing and characterization of LLDPE films loaded with αâ€ŧocopherol, quercetin, and their cyclodextrin inclusion complexes. Journal of Applied Polymer Science, 2010, 117, 2299-2309.	1.3	64
58	Functional siloxanes with photo-activated, simultaneous chain extension and crosslinking for lithography-based 3D printing. Polymer, 2018, 152, 25-34.	1.8	64
59	Controlled Radical Polymerization of 4-Vinylimidazole. Macromolecules, 2012, 45, 3669-3676.	2.2	62
60	Polyurethanes Containing an Imidazolium Diolâ€Based Ionicâ€Liquid Chain Extender for Incorporation of Ionicâ€Liquid Electrolytes. Macromolecular Chemistry and Physics, 2013, 214, 1027-1036.	1.1	62
61	Toward Recyclable Thermosets. Science, 2014, 344, 706-707.	6.0	62
62	Highly Branched Poly(ether ester)s via Cyclization-Free Melt Condensation of A2Oligomers and B3Monomers. Macromolecules, 2006, 39, 2788-2793.	2.2	61
63	Association of Star-Shaped Poly(d,l-lactide)s Containing Nucleobase Multiple Hydrogen Bonding. Biomacromolecules, 2007, 8, 302-308.	2.6	61
64	Effect of Ionic Liquid on Mechanical Properties and Morphology of Zwitterionic Copolymer Membranes. Macromolecules, 2010, 43, 790-796.	2.2	61
65	Gemini Surfactant Electrospun Membranes. Langmuir, 2010, 26, 678-683.	1.6	60
66	Synthesis of Chain End Functionalized Multiple Hydrogen Bonded Polystyrenes and Poly(alkyl) Tj ETQq0 0 0 rgBT	Qverlock	19 ₉ Tf 50 302
67	Influence of Peripheral Hydrogen Bonding on the Mechanical Properties of Photo-Cross-Linked Star-Shaped Poly(d,l-lactide) Networks. Biomacromolecules, 2005, 6, 2866-2874.	2.6	59
68	Vat photopolymerization 3D printing of acid-cleavable PEG-methacrylate networks for biomaterial applications. Materials Today Communications, 2019, 19, 204-211.	0.9	59
69	Synthesis, Properties, and Applications of Ionâ€Containing Polyurethane Segmented Copolymers. Macromolecular Chemistry and Physics, 2014, 215, 2161-2174.	1.1	58
70	Thermal, Rheological, and Ion-Transport Properties of Phosphonium-Based Ionic Liquids. Journal of Physical Chemistry A, 2011, 115, 13829-13835.	1.1	57
71	Synthesis and Characterization of Poly(1,3-cyclohexadiene) Homopolymers and Star-Shaped Polymers. Macromolecules, 2001, 34, 2108-2114.	2.2	56
72	Porous Thin Films Based on Photo-Cross-Linked Star-Shaped Poly(d,l-lactide)s. Langmuir, 2006, 22, 9687-9693.	1.6	56

#	Article	IF	Citations
73	Tailoring macromolecular architecture with imidazole functionality: A perspective for controlled polymerization processes. European Polymer Journal, 2011, 47, 486-496.	2.6	54
74	Probing the Hard Segment Phase Connectivity and Percolation in Model Segmented Poly(urethane) Tj ETQq0 0 () rgBT /Ov	erlggk 10 Tf 5
7 5	Influence of Counteranion on the Thermal and Solution Behavior of Poly(2-(dimethylamino)ethyl) Tj ETQq1 1 0.7	84314 rgE 2.2	3T <u> O</u> verlock 1
76	Hydroxyalkyl-Containing Imidazolium Homopolymers: Correlation of Structure with Conductivity. Macromolecules, 2013, 46, 3037-3045.	2.2	52
77	Phosphonium ionenes from well-defined step-growth polymerization: thermal and melt rheological properties. Polymer Chemistry, 2013, 4, 3582.	1.9	52
78	Super-Hydrophobic Surfaces via Micrometer-Scale Templated Pillars. Chemistry of Materials, 2007, 19, 6145-6149.	3.2	51
79	Comparison of Linear and 4-Arm Star Poly(vinyl pyrrolidone) for Aqueous Binder Jetting Additive Manufacturing of Personalized Dosage Tablets. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23938-23947.	4.0	51
80	Synthesis and Characterization of Aliphatic Ammonium Ionenes: Aqueous Size Exclusion Chromatography for Absolute Molecular Weight Characterization. Macromolecules, 2008, 41, 4635-4641.	2.2	50
81	Ionene segmented block copolymers containing imidazolium cations: Structure–property relationships as a function of hard segment content. Polymer, 2010, 51, 1252-1257.	1.8	50
82	Neutral hydrophilic cathode catalyst binders for microbial fuel cells. Energy and Environmental Science, 2011, 4, 928-934.	15.6	50
83	Reversibly Cross-linkable Bottlebrush Polymers as Pressure-Sensitive Adhesives. ACS Applied Materials & Interfaces, 2018, 10, 26662-26668.	4.0	50
84	Influence of Zwitterions on Thermomechanical Properties and Morphology of Acrylic Copolymers: Implications for Electroactive Applications. Macromolecules, 2011, 44, 8056-8063.	2.2	49
85	Ionic aggregation in random copolymers containing phosphonium ionic liquid monomers. Journal of Polymer Science Part A, 2012, 50, 166-173.	2.5	49
86	Nucleobase-functionalized acrylic ABA triblock copolymers and supramolecular blends. Polymer Chemistry, 2015, 6, 2434-2444.	1.9	49
87	Synthesis and characterization of a novel AB2 monomer and corresponding hyperbranched poly(arylene ether phosphine oxide)s. Journal of Polymer Science Part A, 2000, 38, 3736-3741.	2.5	48
88	Development of a Light-Deactivatable PSA <i>Via</i> Photodimerization. Journal of Adhesion, 2005, 81, 213-229.	1.8	48
89	Advances in phosphonium-based ionic liquids and poly(ionic liquid)s as conductive materials. European Polymer Journal, 2018, 108, 28-37.	2.6	48
90	Synthesis and Characterization of Telechelic Poly(ethylene terephthalate) Sodiosulfonate Ionomers. Macromolecules, 2002, 35, 8738-8744.	2.2	47

#	Article	IF	Citations
91	Preparation of segmented, high molecular weight, aliphatic poly(ether-urea) copolymers in isopropanol. In-situ FTIR studies and polymer synthesis. Polymer, 2004, 45, 5829-5836.	1.8	47
92	Synthesis and Characterization of Star-Shaped Poly(ethylene-co-propylene) Polymers Bearing Terminal Self-Complementary Multiple Hydrogen-Bonding Sites. Macromolecules, 2006, 39, 3132-3139.	2.2	47
93	Addressing water scarcity: cationic polyelectrolytes in water treatment and purification. Polymer International, 2018, 67, 799-814.	1.6	47
94	Advances in Polymeric Materials for Electromechanical Devices. Macromolecular Rapid Communications, 2019, 40, e1800521.	2.0	47
95	Synthesis and Characterization of Well-Defined 12,12-Ammonium Ionenes: Evaluating Mechanical Properties as a Function of Molecular Weight. Macromolecules, 2008, 41, 5216-5222.	2.2	46
96	RAFT Synthesis of ABA Triblock Copolymers as Ionic Liquid-Containing Electroactive Membranes. ACS Applied Materials & Diterfaces, 2012, 4, 6552-6559.	4.0	46
97	Vat photopolymerization of charged monomers: 3D printing with supramolecular interactions. Polymer Chemistry, 2019, 10, 1442-1451.	1.9	46
98	3D Printing Latex: A Route to Complex Geometries of High Molecular Weight Polymers. ACS Applied Materials & Distribution (1998)	4.0	46
99	Nano- and bulk-tack adhesive properties of stimuli-responsive, fullerene–polymer blends, containing polystyrene-block-polybutadiene-block-polystyrene and polystyrene-block-polyisoprene-block-polystyrene rubber-based adhesives. Polymer, 2007, 48, 6773-6781.	1.8	44
100	Real-Time Monitoring of the Stable Free Radical Polymerization of Styrene via in-Situ Mid-Infrared Spectroscopy. Macromolecules, 1999, 32, 7954-7957.	2.2	43
101	Effect of Hyperbranched Surface-Migrating Additives on the Electrospinning Behavior of Poly(methyl) Tj ETQq $1\ 1$	0.7.84314	rggT/Over
102	Melt Dispersion and Electrospinning of Nonâ€Functionalized Multiwalled Carbon Nanotubes in Thermoplastic Polyurethane. Macromolecular Rapid Communications, 2009, 30, 2102-2106.	2.0	42
103	Influence of ionic charge placement on performance of poly(ethylene glycol)-based sulfonated polyurethanes. Polymer, 2012, 53, 1203-1211.	1.8	42
104	Polyimides and Other High-Temperature Polymers. , 2003, , 265-326.		41
105	Charged Polymers via Controlled Radical Polymerization and their Implications for Gene Delivery. Macromolecular Chemistry and Physics, 2007, 208, 1243-1249.	1.1	41
106	Quadruple Hydrogen Bonding Supramolecular Elastomers for Melt Extrusion Additive Manufacturing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32006-32016.	4.0	41
107	Multiple Hydrogen Bonding for Reversible Polymer Surface Adhesion. Langmuir, 2006, 22, 1099-1105.	1.6	40
108	Multiple Hydrogen Bonding for the Noncovalent Attachment of Ionic Functionality in Triblock Copolymers. Macromolecules, 2007, 40, 4396-4398.	2.2	40

#	Article	IF	Citations
109	Imidazolium-Containing ABA Triblock Copolymers as Electroactive Devices. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1280-1288.	4.0	40
110	Synthesis and characterization of isocyanate-free polyureas. Green Chemistry, 2018, 20, 243-249.	4.6	40
111	A comparative study of the structure–property behavior of highly branched segmented poly(urethane) Tj ETQq1	1.0.78431 1.8	
112	Degree of Branching of Highly Branched Polyurethanes Synthesized via theOligomeric A2 Plus B3 Methodology. Macromolecular Chemistry and Physics, 2006, 207, 1197-1206.	1.1	39
113	Morphological Analysis of Telechelic Ureidopyrimidone Functional Hydrogen Bonding Linear and Starâ€Shaped Poly(ethyleneâ€∢i>co⟨/i>â€propylene)s. Macromolecular Rapid Communications, 2007, 28, 1601-1606.	2.0	39
114	Nucleobase-functionalized ABC triblock copolymers: self-assembly of supramolecular architectures. Chemical Communications, 2014, 50, 9145-9148.	2.2	39
115	Water-dispersible cationic polyurethanes containing pendant trialkylphosphoniums. Polymer Chemistry, 2014, 5, 3795-3803.	1.9	39
116	Synthesis and cleavage of core-labile poly(alkyl methacrylate) star polymers. Journal of Polymer Science Part A, 2003, 41, 3083-3093.	2.5	38
117	Synthesis and Properties of Sulfonium Polyelectrolytes for Biological Applications. ACS Macro Letters, 2013, 2, 731-735.	2.3	38
118	Synthesis and characterization of chiral liquid-crystalline polyesters containing sugar-based diols via melt polymerization. Journal of Polymer Science Part A, 2003, 41, 2512-2520.	2.5	37
119	Urea as a monomer for isocyanate-free synthesis of segmented poly(dimethyl siloxane) polyureas. Polymer, 2018, 154, 225-232.	1.8	37
120	Wellâ€Defined Imidazolium ABA Triblock Copolymers as Ionicâ€Liquidâ€Containing Electroactive Membranes. Macromolecular Chemistry and Physics, 2014, 215, 1319-1331.	1.1	36
121	Additive manufacturing of pharmaceuticals for precision medicine applications: A review of the promises and perils in implementation. Additive Manufacturing, 2018, 23, 319-328.	1.7	36
122	Semiâ€Crystalline Polymer Blends for Material Extrusion Additive Manufacturing Printability: A Case Study with Poly(ethylene terephthalate) and Polypropylene. Macromolecular Materials and Engineering, 2019, 304, 1800764.	1.7	35
123	Poly(caprolactone) containing highly branched segmented poly(ester urethane)s via A ₂ with oligomeric B ₃ polymerization. Journal of Polymer Science Part A, 2008, 46, 6285-6295.	2.5	34
124	Taking Advantage of Tailored Electrostatics and Complementary Hydrogen Bonding in the Design of Nanostructures for Biomedical Applications. Macromolecular Symposia, 2008, 270, 1-7.	0.4	34
125	Melt transesterification and characterization of segmented block copolyesters containing 2,2,4,4â€tetramethylâ€1,3â€cyclobutanediol. Journal of Polymer Science Part A, 2012, 50, 3710-3718.	2.5	33
126	Synthesis and characterization of siloxane-containing poly(ureaÂoxamide) segmented copolymers. Polymer, 2013, 54, 4849-4857.	1.8	33

#	Article	IF	CITATIONS
127	3D Printing Amorphous Polysiloxane Terpolymers via Vat Photopolymerization. Macromolecular Chemistry and Physics, 2019, 220, 1800425.	1.1	33
128	Living Anionic Polymerization of Hexamethylcyclotrisiloxane (D3) Using Functionalized Initiation. Macromolecules, 2004, 37, 6657-6659.	2.2	30
129	Additive Manufacturing of Hydrocarbon Elastomers via Simultaneous Chain Extension and Cross-linking of Hydrogenated Polybutadiene. ACS Applied Polymer Materials, 2019, 1, 684-690.	2.0	30
130	Silicon surface modification with trialkoxysilyl-functionalized star-shaped polymers. Journal of Polymer Science Part A, 2005, 43, 3655-3666.	2.5	27
131	Highly Branched Poly(arylene ether)s via Oligomeric A2 + B3 Strategies. Macromolecular Chemistry and Physics, 2006, 207, 576-586.	1.1	27
132	Synthesis of Diazocine-Containing Poly(arylene ether sulfone)s for Tailored Mechanical and Electrochemical Performance. Macromolecules, 2009, 42, 1526-1532.	2.2	27
133	Imidazole-containing triblock copolymers with a synergy of ether and imidazolium sites. Journal of Materials Chemistry C, 2015, 3, 3891-3901.	2.7	27
134	Styrenic DABCO salt-containing monomers for the synthesis of novel charged polymers. Polymer Chemistry, 2016, 7, 3370-3374.	1.9	27
135	Novel Michael Addition Networks Containing Poly(propylene glycol) Telechelic Oligomers. Macromolecular Chemistry and Physics, 2006, 207, 1324-1333.	1.1	25
136	Structure–Property Relationships of Waterâ€Soluble Ammonium–Ionene Copolymers. Macromolecular Chemistry and Physics, 2012, 213, 965-972.	1.1	25
137	Synthesis and characterization of 4-vinylimidazole ABA triblock copolymers utilizing a difunctional RAFT chain transfer agent. Polymer Chemistry, 2013, 4, 2333.	1.9	25
138	Ureido cytosine and cytosine-containing acrylic copolymers. Polymer Chemistry, 2016, 7, 6671-6681.	1.9	25
139	Poly(ether ester) Ionomers as Water-Soluble Polymers for Material Extrusion Additive Manufacturing Processes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12324-12331.	4.0	25
140	Additive manufacturing of highâ€performance engineering polymers: present and future. Polymer International, 2022, 71, 532-536.	1.6	25
141	Synthesis and Characterization of Decahydronaphthalene-Containing Polyesters. Macromolecules, 2015, 48, 8733-8737.	2.2	24
142	Determination of glass transition temperature of polyimides from atomistic molecular dynamics simulations and ⟨scp⟩machineâ∈learning⟨/scp⟩ algorithms. Journal of Polymer Science, 2020, 58, 1521-1534.	2.0	24
143	Oxidation and epoxidation of poly(1,3-cyclohexadiene). Journal of Polymer Science Part A, 2003, 41, 84-93.	2.5	23
144	Submicron functional fibrous scaffolds based on electrospun phospholipids. Journal of Materials Chemistry, 2007, 17, 605-608.	6.7	23

#	Article	IF	CITATIONS
145	Segmented imidazolium ionenes: Solution rheology, thermomechanical properties, and electrospinning. Polymer, 2017, 114, 257-265.	1.8	23
146	Synthesis and Characterization of Amorphous Bibenzoate (Co)polyesters: Permeability and Rheological Performance. Macromolecules, 2017, 50, 7603-7610.	2.2	23
147	Michael addition for crosslinking of poly(caprolactone)s. Journal of Polymer Science Part A, 2009, 47, 5437-5447.	2.5	22
148	Melt Synthesis and Characterization of Aliphatic Low-T $<$ sub $>$ g $<$ /sub $>$ Polyesters as Pressure Sensitive Adhesives. Journal of Adhesion, 2010, 86, 395-408.	1.8	22
149	DNAâ€Inspired Hierarchical Polymer Design: Electrostatics and Hydrogen Bonding in Concert. Macromolecular Bioscience, 2012, 12, 29-39.	2.1	22
150	RAFT polymerization of temperature- and salt-responsive block copolymers as reversible hydrogels. Polymer, 2014, 55, 2325-2331.	1.8	22
151	Solution properties and electrospinning of phosphonium gemini surfactants. Soft Matter, 2014, 10, 3970-3977.	1.2	22
152	Light and latex: advances in the photochemistry of polymer colloids. Polymer Chemistry, 2020, 11, 3498-3524.	1.9	22
153	Vat photopolymerization of liquid, biodegradable PLGA-based oligomers as tissue scaffolds. European Polymer Journal, 2020, 130, 109693.	2.6	22
154	Fundamental Investigations of the Free Radical Copolymerization and Terpolymerization of Maleic Anhydride, Norbornene, and Norbornenetert-Butyl Ester:Â In-Situ Mid-Infrared Spectroscopic Analysis. Macromolecules, 2001, 34, 8064-8071.	2.2	21
155	Synthesis and characterization of triglyceride-based polyols and tack-free coatings via the air oxidation of soy oil. Journal of Applied Polymer Science, 2006, 102, 690-697.	1.3	21
156	Microphaseâ€Separated Poly(vinylpyridine) Block Copolymer Prepared with a Novel Bifunctional Initiator. Macromolecular Chemistry and Physics, 2009, 210, 579-584.	1.1	21
157	Electrospinning zwitterion-containing nanoscale acrylic fibers. Polymer, 2009, 50, 4781-4787.	1.8	21
158	Effects of Copolymer Structure on the Mechanical Properties of Poly(dimethyl siloxane) Poly(oxamide) Segmented Copolymers. Macromolecular Chemistry and Physics, 2013, 214, 2073-2082.	1.1	21
159	Poly(ethylene glycol)-based ammonium ionenes containing nucleobases. Polymer, 2013, 54, 1588-1595.	1.8	21
160	Methacrylate-based block ionomers I: Synthesis of block ionomers derived from t-butyl methacrylate and alkyl methacrylates. Polymer International, 1994, 33, 205-216.	1.6	20
161	Moisture-Curing Kinetics of Isocyanate Prepolymer Adhesives. Journal of Adhesion, 2002, 78, 297-312.	1.8	20
162	Stable Free-Radical Polymerization of Styrene in Combination with 2-Vinylnaphthalene Initiation. Macromolecular Chemistry and Physics, 2003, 204, 570-576.	1.1	20

#	Article	IF	Citations
163	Synthesis of Poly(Arylene Ether)s., 2003,, 327-374.		20
164	Stable Free Radical Polymerization Kinetics of Alkyl Acrylate Monomers Using in situ FTIR Spectroscopy: Influence of Hydroxyl-Containing Monomers and Additives. Macromolecular Chemistry and Physics, 2004, 205, 692-698.	1.1	20
165	Influence of Site-Specific Sulfonation on Acrylic Graft Copolymer Morphology. Macromolecules, 2008, 41, 3503-3512.	2.2	20
166	Thiol-Michael â€~click' hydrogels as an imageable packing material for cancer therapy. Polymer, 2017, 125, 66-75.	1.8	20
167	Polymerized ionic liquids: Effects of counterâ€anions on ion conduction and polymerization kinetics. Journal of Polymer Science Part A, 2018, 56, 1346-1357.	2.5	20
168	Polyesters. , 2003, , 17-134.		19
169	Michael Addition Reaction Kinetics of Acetoacetates and Acrylates for the Formation of Polymeric Networks. Progress in Reaction Kinetics and Mechanism, 2007, 32, 165-194.	1.1	19
170	lonomer design for augmented charge transport in novel ionic polymer transducers. Smart Materials and Structures, 2009, 18, 104005.	1.8	19
171	Segmented block copolyesters using click chemistry. Journal of Polymer Science Part A, 2012, 50, 3797-3805.	2.5	19
172	The preparation of cation-functionalized multi-wall carbon nanotube/sulfonated polyurethane composites. Carbon, 2013, 54, 133-142.	5.4	19
173	Synthesis and Characterization of Polysulfone-Containing Poly(butylene terephthalate) Segmented Block Copolymers. Macromolecules, 2014, 47, 8171-8177.	2.2	19
174	Influence of nucleobase stoichiometry on the self-assembly of ABC triblock copolymers. Chemical Communications, 2016, 52, 7564-7567.	2.2	19
175	Electrospinning of plant oilâ€based, nonâ€isocyanate polyurethanes for biomedical applications. Journal of Applied Polymer Science, 2018, 135, 46464.	1.3	19
176	Polymer-inorganic hybrid colloids for ultraviolet-assisted direct ink write of polymer nanocomposites. Additive Manufacturing, 2020, 35, 101393.	1.7	19
177	UV-assisted direct ink write printing of fully aromatic Poly(amide imide)s: Elucidating the influence of an acrylic scaffold. Polymer, 2021, 212, 123306.	1.8	19
178	Synthesis, Properties and Applications of Poly(Trimethylene Terephthalate)., 0,, 361-397.		18
179	Oligomeric A ₂ + B ₃ synthesis of highly branched polysulfone ionomers: novel candidates for ionic polymer transducers. Polymer International, 2010, 59, 25-35.	1.6	18
180	Powder bed fusion of poly(phenylene sulfide) at bed temperatures significantly below melting. Additive Manufacturing, 2019, 28, 506-516.	1.7	18

#	Article	IF	Citations
181	Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Dissociative Carbamate Exchange Carbamate Exchange Carbamate C	4.0	18
182	Investigations of thermal polymerization in the stable free-radical polymerization of 2-vinylnaphthalene. Journal of Polymer Science Part A, 2002, 40, 583-590.	2.5	17
183	Novel dinitroxide mediating agent for stable free-radical polymerization. Journal of Polymer Science Part A, 2004, 42, 1547-1556.	2.5	17
184	Photodimerization of Coumarin Functionalized Poly(alkyl Acrylate) and Poly(alkyl Methacrylate) Random Copolymers: Influence of Copolymer Composition on Photocrosslinking. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 45, 9-15.	1.2	17
185	Synthesis of an Acid‣abile Diacrylate Crosslinker for Cleavable Michael Addition Networks. Macromolecular Chemistry and Physics, 2007, 208, 1949-1955.	1.1	17
186	Novel michael addition networks containing urethane hydrogen bonding. Journal of Polymer Science Part A, 2007, 45, 4118-4128.	2.5	17
187	Poly(propylene glycol)â€based ammonium ionenes as segmented ionâ€containing block copolymers. Journal of Polymer Science Part A, 2010, 48, 4159-4167.	2.5	17
188	3D-Printable Biodegradable Polyester Tissue Scaffolds for Cell Adhesion. Australian Journal of Chemistry, 2015, 68, 1409.	0.5	17
189	Isocyanate- and solvent-free synthesis of melt processible polyurea elastomers derived from urea as a monomer. RSC Advances, 2020, 10, 18760-18768.	1.7	17
190	Synthesis and characterization of well-defined star polymers via a controlled sol-gel process. Macromolecules, 1991, 24, 1431-1434.	2.2	16
191	Synthesis and characterization of telechelic phosphine oxide polyesters and cobalt(II) chloride complexes. Polymer, 2006, 47, 4085-4093.	1.8	16
192	Sugarâ€Derived Poly(βâ€thioester)s as a Biomedical Scaffold. Macromolecular Chemistry and Physics, 2018, 219, 1800177.	1.1	16
193	Tuning the material properties of a water-soluble ionic polymer using different counterions for material extrusion additive manufacturing. Polymer, 2019, 176, 283-292.	1.8	16
194	Introduction to Synthetic Methods in Step-Growth Polymers. , 2003, , 1-16.		15
195	Synthesis of 12,12â€Ammonium Ionenes with Functionality for Chain Extension and Crossâ€Linking <i>via</i> UV Irradiation. Macromolecular Chemistry and Physics, 2009, 210, 555-564.	1.1	15
196	Photoactive Polyesters Containing <i>o < /i> - Nitro Benzyl Ester Functionality for Photodeactivatable Adhesion. Journal of Adhesion, 2013, 89, 548-558.</i>	1.8	15
197	Synthesis of Water-Soluble Imidazolium Polyesters as Potential Nonviral Gene Delivery Vehicles. Biomacromolecules, 2017, 18, 68-76.	2.6	15
198	Quadruple hydrogen bonding containing supramolecular thermoplastic elastomers: Mechanical and morphological correlations. Journal of Polymer Science Part A, 2019, 57, 13-23.	2.5	15

#	Article	IF	CITATIONS
199	Phosphonium-Based Polyzwitterions: Influence of Ionic Structure and Association on Mechanical Properties. Macromolecules, 2020, 53, 11009-11018.	2.2	15
200	Influence of charge placement on the thermal and morphological properties of Âsulfonated segmented copolyesters. Polymer, 2013, 54, 3521-3528.	1.8	14
201	Poly(\hat{l}^2 -thioesters) containing monodisperse oxamide hard segments using a chemoselective thiol-Michael addition reaction. Polymer Chemistry, 2017, 8, 2598-2608.	1.9	14
202	Mechanically Strong, Thermally Stable, and Flame Retardant Poly(ether imide) Terminated with Phosphonium Bromide. Macromolecules, 2019, 52, 7361-7368.	2.2	14
203	3D Printing Carbonaceous Objects from Polyimide Pyrolysis. ACS Macro Letters, 2021, 10, 412-418.	2.3	14
204	Polyurethanes and Polyureas., 2003,, 197-263.		13
205	Polyamides. , 2003, , 135-195.		13
206	Poly(Ethylene Terephthalate) Polymerization– Mechanism, Catalysis, Kinetics, Mass Transfer and Reactor Design. , 0, , 29-115.		13
207	Determination of monomer reactivity ratios usingin situ FTIR spectroscopy for maleic anhydride/norbornene-free-radical copolymerization. Journal of Applied Polymer Science, 2004, 92, 3240-3246.	1.3	13
208	Synthesis and characterization of poly(propylene glycol) polytrioxamide and poly(urea oxamide) segmented copolymers. Polymer International, 2014, 63, 1184-1191.	1.6	13
209	TIPS pentacene loaded PEO-PDLLA core-shell nanoparticles have similar cellular uptake dynamics in M1 and M2 macrophages and in corresponding in vivo microenvironments. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1255-1266.	1.7	13
210	Tailoring the glassy mesophase range of thermotropic polyesters through copolymerization of $4,4\hat{a}\in^{\text{TM}}$ -bibenzoate and kinked isomer. Polymer, 2019, 163, 125-133.	1.8	13
211	Charge Transport in Imidazolium-Based Homo- and Triblock Poly(ionic liquid)s. Macromolecules, 2019, 52, 620-628.	2.2	13
212	Influence of Bibenzoate Regioisomers on Cyclohexanedimethanol-Based (Co)polyester Structure–Property Relationships. Macromolecules, 2019, 52, 835-843.	2.2	13
213	Nonâ€isocyanate Polyurethanes from 1,1′â€Carbonyldiimidazole: A Polycondensation Approach. Macromolecular Rapid Communications, 2021, 42, e2100163.	2.0	13
214	Synthesis and characterization of sulfonated liquid crystalline polyesters. Polymer International, 2002, 51, 540-546.	1.6	12
215	Ring-Opening Polymerization of Imidazole Epoxides for the Synthesis of Imidazole-Substituted Poly(ethylene oxides). Macromolecules, 2009, 42, 8010-8012.	2.2	12
216	Introduction of Multiple Hydrogen Bonding for Enhanced Mechanical Performance of Polymer-Carbon Nanotube Composites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 1016-1021.	1.2	12

#	Article	IF	CITATIONS
217	Synthesis of Folic Acid ontaining Imidazolium Copolymers for Potential Gene Delivery Applications. Macromolecular Chemistry and Physics, 2013, 214, 797-805.	1.1	12
218	High-Performance Segmented Liquid Crystalline Copolyesters. Macromolecular Chemistry and Physics, 2015, 216, 1754-1763.	1.1	12
219	Doubly-Charged Ionomers with Enhanced Microphase-Separation. Macromolecules, 2016, 49, 6965-6972.	2.2	12
220	Influence of cyclobutane segments in cycloaliphatic decahydronaphthalene-containing copolyesters. High Performance Polymers, 2017, 29, 750-756.	0.8	12
221	Synthesis of Norbornene Derivatives by Diels-Alder Cycloaddition and Subsequent Copolymerization with Maleic Anhydride. Macromolecular Chemistry and Physics, 2004, 205, 621-627.	1.1	11
222	Influence of Hydrogen Bonding on the Adhesive Properties of Photo-Curable Acrylics. Journal of Adhesion, 2009, 85, 1-17.	1.8	11
223	Electrospinning of radical polymers: redox-active fibrous membrane formation. Polymer Journal, 2012, 44, 264-268.	1.3	11
224	Synthesis and characterization of phosphonated Poly(ethylene terephthalate) ionomers. Polymer, 2018, 151, 154-163.	1.8	11
225	Compatibilization of Polyester/Polyamide Blends with a Phosphonated Poly(ethylene terephthalate) lonomer: Comparison of Monovalent and Divalent Pendant lons. ACS Applied Polymer Materials, 2019, 1, 1071-1080.	2.0	11
226	Using fillers to tune material properties of an ion-containing semi-crystalline poly(ethylene glycol) for fused filament fabrication additive manufacturing. Additive Manufacturing, 2021, 39, 101844.	1.7	11
227	Predicting mechanical property plateau in laser polymer powder bed fusion additive manufacturing via the critical coalescence ratio. Materials and Design, 2021, 201, 109474.	3.3	11
228	Copolyesters based on bibenzoic acids. Polymer, 2018, 135, 120-130.	1.8	11
229	Vat Photopolymerization of Reinforced Styrene–Butadiene Elastomers: A Degradable Scaffold Approach. ACS Applied Materials & Samp; Interfaces, 2022, 14, 18965-18973.	4.0	11
230	Nontraditional Step-Growth Polymerization: Transition Metal Coupling. , 2003, , 467-526.		10
231	Synthesis and Characterization of Novel Segmented Polyionenes Based on Polydimethylsiloxane Soft Segments. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 215-224.	1.2	10
232	Controlled radical polymerization of anthracene-containing methacrylate copolymers for stimuli-responsive materials. Journal of Polymer Science Part A, 2016, 54, 2302-2311.	2.5	10
233	Phosphonium-containing diblock copolymers from living anionic polymerization of 4-diphenylphosphino styrene. Chemical Communications, 2016, 52, 950-953.	2.2	10
234	Synthesis of ureaâ€containing ABA triblock copolymers: Influence of pendant hydrogen bonding on morphology and thermomechanical properties. Journal of Polymer Science Part A, 2018, 56, 1844-1852.	2.5	10

#	Article	IF	CITATIONS
235	Doubly Charged ABA Triblock Copolymers: Thermomechanically Robust Physical Network and Hierarchical Microstructures. Macromolecules, 2019, 52, 9168-9176.	2.2	10
236	Impact of metal cations on the thermal, mechanical, and rheological properties of telechelic sulfonated polyetherimides. Polymer Chemistry, 2020, 11, 393-400.	1.9	10
237	Phosphonated Poly(ethylene terephthalate) ionomers as compatibilizers in extruded Poly(ethylene) Tj ETQq1 1 0	.784314 1.8	rgBT/Overloc
238	Sustainable additive manufacturing: predicting binder jettability of <scp>waterâ€soluble</scp> , biodegradable and recyclable polymers. Polymer International, 2021, 70, 958-963.	1.6	10
239	Vat photopolymerization of unsaturated polyesters utilizing a polymerizable ionic liquid as a non-volatile reactive diluent. Polymer, 2021, 223, 123727.	1.8	10
240	Melt polycondensation of carboxytelechelic polyethylene for the design of degradable segmented copolyester polyolefins. Polymer Chemistry, 2022, 13, 3116-3125.	1.9	10
241	Synthesis and Polymerization of Cyclic Polyester Oligomers. , 0, , 117-142.		9
242	Preparation, Properties and Applications of Unsaturated Polyesters., 0,, 697-713.		9
243	Poly(Butylene Terephthalate). , 0, , 293-321.		9
244	Continuous Solid-State Polycondensation of Polyesters. , 0, , 143-194.		9
245	Crystallization of photo-chain extended poly(ethylene glycol). European Polymer Journal, 2005, 41, 219-224.	2.6	9
246	Influence of tertiary diamines on the synthesis of high-molecular-weight poly(1,3-cyclohexadiene). Journal of Polymer Science Part A, 2005, 43, 1216-1227.	2.5	9
247	Influence of Counterion on Thermal, Viscoelastic, and Ion Conductive Properties of Phosphonium Ionenes. Macromolecular Symposia, 2014, 342, 56-66.	0.4	9
248	Association of Nucleobaseâ€Containing Ammonium Ionenes. Macromolecular Chemistry and Physics, 2014, 215, 2337-2344.	1.1	9
249	Nanoscale Resolution of Electric-field Induced Motion in Ionic Diblock Copolymer Thin Films. ACS Applied Materials & Diblock Copolymer Thin Films.	4.0	9
250	Synthesis and characterization of a nematic fully aromatic polyester based on biphenyl 3,4 \hat{a} \in 2-dicarboxylic acid. Polymer Chemistry, 2019, 10, 4287-4296.	1.9	9
251	Novel Electrospun Pullulan Fibers Incorporating Hydroxypropyl- \hat{l}^2 -Cyclodextrin: Morphology and Relation with Rheological Properties. Polymers, 2020, 12, 2558.	2.0	9
252	Supramolecular Salts for Additive Manufacturing of Polyimides. ACS Applied Materials & Samp; Interfaces, 2021, 13, 48061-48070.	4.0	9

#	Article	IF	CITATIONS
253	Additives for the Modification of Poly(Ethylene Terephthalate) to Produce Engineering-Grade Polymers., 0,, 495-540.		8
254	Synthesis of Polysulfone-Containing Poly(butylene terephthalate) Segmented Block Copolymers: Influence of Segment Length on Thermomechanical Performance. Macromolecules, 2017, 50, 5107-5113.	2.2	8
255	Enhanced scattering induced by electrostatic correlations in concentrated solutions of salt-free dipolar and ionic polymers. Journal of Chemical Physics, 2018, 149, 163336.	1.2	8
256	Amorphous copolyesters based on bibenzoic acids and neopentyl glycol. Journal of Polymer Science Part A, 2019, 57, 579-587.	2.5	8
257	Investigations of the Adhesion of Maleic Anhydride/Cyclic Olefin Alternating Copolymers to Silicon Substrates: Improved Materials for 193 nm Lithography. Journal of Adhesion, 2002, 78, 1-13.	1.8	7
258	Synthesis and characterization of poly(ethylene glycol) methyl ether endcapped poly(ethylene) Tj ETQq0 0 0 rgBT	/8verlock	10 Tf 50 54
259	Amorphous and Crystalline Polyesters Based on 1,4-Cyclohexanedimethanol., 0,, 267-292.		7
260	Photo-Reactive Polyimides and Poly(siloxane imide)s as Reversible Polymeric Interfaces. Journal of Adhesion, 2010, 86, 1012-1028.	1.8	7
261	Diphenylphosphino Styreneâ€Containing Homopolymers: Influence of Alkylation and Mobile Anions on Physical Properties. Macromolecular Rapid Communications, 2016, 37, 1212-1217.	2.0	7
262	Hydrogen bond containing multiwalled carbon nanotubes in polyurethane composites. Polymer Composites, 2016, 37, 1425-1434.	2.3	7
263	Hydrocarbonâ€Soluble Piperazineâ€Containing Dilithium Anionic Initiator for High <i>Cis</i> i>â€1,4 Isoprene Polymerization. Macromolecular Chemistry and Physics, 2018, 219, 1700201.	1.1	7
264	Printing nanomaterials in shrinking gels. Science, 2018, 362, 1244-1245.	6.0	7
265	Suitability of 3D-Printed devices for low-temperature geochemical experiments. Applied Geochemistry, 2018, 98, 121-126.	1.4	7
266	Acetyl-protected cytosine and guanine containing acrylics as supramolecular adhesives. Journal of Adhesion, 2019, 95, 146-167.	1.8	7
267	Thiol–ene addition enables tailored synthesis of poly(2â€oxazoline)―graft â€poly(vinyl pyrrolidone) copolymers for binder jetting 3D printing. Polymer International, 2020, 69, 902-911.	1.6	7
268	Photodegradation of Poly(Ethylene Terephthalate) and Poly(Ethylene/1,4-Cyclohexylenedimethylene) Tj ETQq0 0 () rgBT /Ove	erlock 10 Tf
269	Protonatable Ionenes for Nucleic Acid Complexation. Macromolecular Bioscience, 2009, 9, 1127-1134.	2.1	6
270	Synthesis and solution rheology of adenine-containing polyelectrolytes for electrospinning. Polymer, 2012, 53, 1437-1443.	1.8	6

#	Article	IF	CITATIONS
271	Supercritical Fluid Chromatography with Evaporative Light Scattering Detection (SFC-ELSD) for Determination of Oligomer Molecular Weight Distributions. Chromatographia, 2016, 79, 977-984.	0.7	6
272	Quadruple Hydrogen Bond-Containing A-AB-A Triblock Copolymers: Probing the Influence of Hydrogen Bonding in the Central Block. Molecules, 2021, 26, 4705.	1.7	6
273	Recycling Polyesters by Chemical Depolymerization. , 0, , 563-590.		5
274	Thermal and living anionic polymerization of 4-vinylbenzyl piperidine. Polymer Chemistry, 2014, 5, 6003-6011.	1.9	5
275	Synthesis and Characterization of Long-Chain Branched Poly(ether imide)s with A3 Comonomers. ACS Applied Polymer Materials, 2020, 2, 958-965.	2.0	5
276	Characterization and structure-property relationships of an injectable thiol-Michael addition hydrogel toward compatibility with glioblastoma therapy. Acta Biomaterialia, 2022, 144, 266-278.	4.1	5
277	Chemistry and Properties of Phenolic Resins and Networks. , 2003, , 375-430.		4
278	Nontraditional Step-Growth Polymerization: ADMET. , 2003, , 431-466.		4
279	Pseudoâ€Living Anionic Telomerization of Butaâ€1,3â€diene. Macromolecular Chemistry and Physics, 2008, 209, 1983-1991.	1.1	4
280	Free radical polymerization of caffeineâ€containing methacrylate monomers. Journal of Polymer Science Part A, 2015, 53, 2829-2837.	2.5	4
281	Living anionic polymerization of 4â€diphenylphosphino styrene for ABC triblock copolymers. Polymer International, 2017, 66, 52-58.	1.6	4
282	Advanced Polymers for Reduced Energy Consumption in Architecture. Macromolecular Rapid Communications, 2019, 40, 1800597.	2.0	4
283	Facile Preparation of Halogen-Free Poly(ether imide) Containing Phosphonium and Sulfonate Groups. ACS Applied Polymer Materials, 2020, 2, 66-73.	2.0	4
284	Depolymerization and Recycling. , 2003, , 527-574.		3
285	The Historical Development of Polyesters. , 0, , 1-28.		3
286	Polyester Fibers: Fiber Formation and End-Use Applications. , 0, , 399-433.		3
287	Influence of dianhydride regiochemistry on thermomechanical and rheological properties of 3,3â \in 2- and 4,4â \in 2-polyetherimides. Polymer, 2021, 212, 123277.	1.8	3
288	Ageing of PBFâ€Grade Poly(Phenylene Sulfide) Powder and its Effect on Critical Printability Properties. Macromolecular Materials and Engineering, 2021, 306, 2000599.	1.7	3

#	Article	IF	CITATIONS
289	Synthesis and characterization of novel acid-sensitive tert-butyl methacrylate and isobutyl methacrylate containing star-shaped polymers., 2001,,.		2
290	Biaxially Oriented Poly(Ethylene 2,6-Naphthalene) Films: Manufacture, Properties and Commercial Applications., 0,, 335-360.		2
291	Controlled Degradation Polyesters. , 0, , 591-608.		2
292	Thermotropic Liquid Crystal Polymer Reinforced Polyesters., 0,, 665-696.		2
293	PEER Polymers: New Unsaturated Polyesters for Fiber-Reinforced Composite Materials., 0,, 715-731.		2
294	Solid-State Polycondensation of Polyester Resins: Fundamentals and Industrial Production. , 0, , 195-242.		2
295	New Poly(Ethylene Terephthalate) Copolymers. , 0, , 243-265.		2
296	Taking Advantage of Supramolecular Structure in Melt and Solution Electrospinning. Materials Research Society Symposia Proceedings, 2006, 948, 1.	0.1	2
297	Deciphering the 3D Microstructures of a Doubly Charged Homopolymer through a Complementary Correlation of Monomer Crystallography and Polymer Powder X-ray Diffraction. Macromolecules, 2020, 53, 6529-6537.	2.2	2
298	Process-structure–property relationships following thermo-oxidative exposure of powder bed fusion printed poly(phenylene sulfide). MRS Communications, 2021, 11, 179-188.	0.8	2
299	Hydroxyethylresorcinol- and hydroxyethylhydroquinone-containing poly(ethylene terephthalate) copolymers. Polymer, 2021, 228, 123890.	1.8	2
300	Synthesis of star-shaped polystyrenes via nitroxide-mediated stable free-radical polymerization., 2001, 39, 216.		2
301	Properties and Applications of Poly(Ethylene 2,6-Naphthalene), Its Copolyesters and Blends. , 0, , 323-334.		1
302	Reaction: Benign by Design Demands Innovation. CheM, 2017, 2, 7-8.	5.8	1
303	Characterization of peptide coatings adhered to synthetic fibers: A versatile model for peptide nucleic acids. International Journal of Adhesion and Adhesives, 2017, 75, 17-22.	1.4	1
304	Polymeric Imidazoles and Imidazoliums in Nanomedicine: Comparison to Ammoniums and Phosphoniums., 2015,, 231-266.		1
305	Maleation of poly(3,4-epoxy-1-butene) for accelerated crosslinking in the presence of a redox catalyst. Journal of Polymer Science Part A, 2002, 40, 2789-2798.	2.5	0
306	Relationship between Polyester Quality and Processability: Hands-On Experience., 0,, 435-493.		0

TIMOTHY E LONG

#	Article	IF	CITATIONS
307	Thermoplastic Polyester Composites. , 0, , 541-562.		O
308	High-Performance Liquid Crystal Polyesters with Controlled Molecular Structure., 0,, 643-664.		0
309	Hydrogen Bond Functionalized Block Copolymers and Telechelic Oligomers. , 0, , 63-102.		O
310	Speaking Different Languages: From Molecules to Manufacturing. Polymer International, 2018, 67, 5-6.	1.6	O
311	Nurturing inclusivity: removing obstacles and valuing perspectives. Polymer International, 2022, 71, 499-500.	1.6	O
312	The importance of sharing ideas: recognizing the 140th anniversary of <scp>SCI</scp> leadership. Polymer International, 2022, 71, 739-740.	1.6	0