Wei Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2162458/publications.pdf Version: 2024-02-01

\WELLII

#	Article	IF	CITATIONS
1	VPS34 Acetylation Controls Its Lipid Kinase Activity and the Initiation of Canonical and Non-canonical Autophagy. Molecular Cell, 2017, 67, 907-921.e7.	9.7	110
2	AKT activator SC79 protects hepatocytes from TNF-α-mediated apoptosis and alleviates <scp>d</scp> -Gal/LPS-induced liver injury. American Journal of Physiology - Renal Physiology, 2019, 316, G387-G396.	3.4	51
3	IRE1 signaling pathway mediates protective autophagic response against manganese-induced neuronal apoptosis in vivo and in vitro. Science of the Total Environment, 2020, 712, 136480.	8.0	48
4	Oxidative stress involvement in manganese-induced alpha-synuclein oligomerization in organotypic brain slice cultures. Toxicology, 2013, 305, 71-78.	4.2	46
5	Methyl-mercury induces apoptosis through ROS-mediated endoplasmic reticulum stress and mitochondrial apoptosis pathways activation in rat cortical neurons. Free Radical Research, 2019, 53, 26-44.	3.3	46
6	Sulforaphane Prevents Methylmercury-Induced Oxidative Damage and Excitotoxicity Through Activation of the Nrf2-ARE Pathway. Molecular Neurobiology, 2017, 54, 375-391.	4.0	44
7	Melatonin Inhibits Manganese-Induced Motor Dysfunction and Neuronal Loss in Mice: Involvement of Oxidative Stress and Dopaminergic Neurodegeneration. Molecular Neurobiology, 2015, 51, 68-88.	4.0	38
8	Alpha-synuclein is involved in manganese-induced spatial memory and synaptic plasticity impairments via TrkB/Akt/Fyn-mediated phosphorylation of NMDA receptors. Cell Death and Disease, 2020, 11, 834.	6.3	33
9	Sirtuin 3 is required for the protective effect of Resveratrol on Manganeseâ€induced disruption of mitochondrial biogenesis in primary cultured neurons. Journal of Neurochemistry, 2021, 156, 121-135.	3.9	33
10	Alpha-Synuclein is Involved in Manganese-Induced ER Stress via PERK Signal Pathway in Organotypic Brain Slice Cultures. Molecular Neurobiology, 2014, 49, 399-412.	4.0	31
11	Mn-Induced Neurocytes Injury and Autophagy Dysfunction in Alpha-Synuclein Wild-Type and Knock-Out Mice: Highlighting the Role of Alpha-Synuclein. Neurotoxicity Research, 2019, 36, 66-80.	2.7	30
12	Manganese induces autophagy dysregulation: The role of S-nitrosylation in regulating autophagy related proteins in vivo and in vitro. Science of the Total Environment, 2020, 698, 134294.	8.0	30
13	Manganese activates autophagy to alleviate endoplasmic reticulum stress–induced apoptosis via PERK pathway. Journal of Cellular and Molecular Medicine, 2020, 24, 328-341.	3.6	28
14	Mn Inhibits GSH Synthesis via Downregulation of Neuronal EAAC1 and Astrocytic xCT to Cause Oxidative Damage in the Striatum of Mice. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	4.0	27
15	Resveratrol prevents benzo(a)pyrene-induced disruption of mitochondrial homeostasis via the AMPK signaling pathway in primary cultured neurons. Environmental Pollution, 2020, 261, 114207.	7.5	27
16	Protective effects of MK-801 on methylmercury-induced neuronal injury in rat cerebral cortex: Involvement of oxidative stress and glutamate metabolism dysfunction. Toxicology, 2012, 300, 112-120.	4.2	26
17	Endoplasmic reticulum stress signaling involvement in manganese-induced nerve cell damage in organotypic brain slice cultures. Toxicology Letters, 2013, 222, 239-246.	0.8	26
18	The role Sâ€nitrosylation in manganeseâ€induced autophagy dysregulation in SH‣Y5Y cells. Environmental Toxicology, 2017, 32, 2428-2439.	4.0	23

Wei Liu

#	Article	IF	CITATIONS
19	Exploring Cross-Talk Between Oxidative Damage and Excitotoxicity and the Effects of Riluzole in the Rat Cortex After Exposure to Methylmercury. Neurotoxicity Research, 2014, 26, 40-51.	2.7	22
20	Manganese-Disrupted Interaction of Dopamine D1 and NMDAR in the Striatum to Injury Learning and Memory Ability of Mice. Molecular Neurobiology, 2016, 53, 6745-6758.	4.0	22
21	Tea Polyphenols Protect Against Methylmercury-Induced Cell Injury in Rat Primary Cultured Astrocytes, Involvement of Oxidative Stress and Glutamate Uptake/Metabolism Disorders. Molecular Neurobiology, 2016, 53, 2995-3009.	4.0	22
22	Effect of the crossâ€ŧalk between autophagy and endoplasmic reticulum stress on Mnâ€induced alphaâ€synuclein oligomerization. Environmental Toxicology, 2018, 33, 315-324.	4.0	22
23	Corynoxine B ameliorates HMGB1-dependent autophagy dysfunction during manganese exposure in SH-SY5Y human neuroblastoma cells. Food and Chemical Toxicology, 2019, 124, 336-348.	3.6	22
24	Mechanisms of oxidative stress in methylmercury-induced neurodevelopmental toxicity. NeuroToxicology, 2021, 85, 33-46.	3.0	22
25	Occupational manganese exposure, reproductive hormones, and semen quality in male workers: A cross-sectional study. Toxicology and Industrial Health, 2019, 35, 53-62.	1.4	21
26	Protective role of mRNA demethylase FTO on axon guidance molecules of nigro-striatal projection system in manganese-induced parkinsonism. Journal of Hazardous Materials, 2022, 426, 128099.	12.4	21
27	Excitotoxicity and oxidative damages induced by methylmercury in rat cerebral cortex and the protective effects of tea polyphenols. Environmental Toxicology, 2014, 29, 269-283.	4.0	20
28	Protective effects of Alpha-lipoic acid on MeHg-induced oxidative damage and intracellular Ca ²⁺ dyshomeostasis in primary cultured neurons. Free Radical Research, 2016, 50, 542-556.	3.3	19
29	Alpha-Synuclein and Calpains Disrupt SNARE-Mediated Synaptic Vesicle Fusion During Manganese Exposure in SH-SY5Y Cells. Cells, 2018, 7, 258.	4.1	18
30	Memantine, a Low-Affinity NMDA Receptor Antagonist, Protects against Methylmercury-Induced Cytotoxicity of Rat Primary Cultured Cortical Neurons, Involvement of Ca2+ Dyshomeostasis Antagonism, and Indirect Antioxidation Effects. Molecular Neurobiology, 2017, 54, 5034-5050.	4.0	17
31	Inhibition of Calpain Prevents Manganese-Induced Cell Injury and Alpha-Synuclein Oligomerization in Organotypic Brain Slice Cultures. PLoS ONE, 2015, 10, e0119205.	2.5	16
32	Alpha-lipoic acid protects against methylmercury-induced neurotoxic effects via inhibition of oxidative stress in rat cerebral cortex. Environmental Toxicology and Pharmacology, 2015, 39, 157-166.	4.0	16
33	Alpha-lipoic acid reduces methylmercury-induced neuronal injury in rat cerebral cortex via antioxidation pathways. Environmental Toxicology, 2017, 32, 931-943.	4.0	16
34	Inhibition of Calpains Protects Mn-Induced Neurotransmitter release disorders in Synaptosomes from Mice: Involvement of SNARE Complex and Synaptic Vesicle Fusion. Scientific Reports, 2017, 7, 3701.	3.3	14
35	Manganese exposure caused reproductive toxicity of male mice involving activation of GnRH secretion in the hypothalamus by prostaglandin E2 receptors EP1 and EP2. Ecotoxicology and Environmental Safety, 2020, 201, 110712.	6.0	14
36	Oxidative stress accelerates synaptic glutamate dyshomeostasis and NMDARs disorder during methylmercuryâ€induced neuronal apoptosis in rat cerebral cortex. Environmental Toxicology, 2020, 35, 683-696.	4.0	13

Wei Liu

#	Article	IF	CITATIONS
37	Manganese-induced alpha-synuclein overexpression aggravates mitochondrial damage by repressing PINK1/Parkin-mediated mitophagy. Food and Chemical Toxicology, 2021, 152, 112213.	3.6	13
38	MK-801 Protects against Intracellular Ca2+ Overloading and Improves N-methyl-d-aspartate Receptor Expression in Cerebral Cortex of Methylmercury-Poisoned Rats. Journal of Molecular Neuroscience, 2013, 49, 162-171.	2.3	12
39	Manganese-induced alpha-synuclein overexpression impairs synaptic vesicle fusion by disrupting the Rab3 cycle in primary cultured neurons. Toxicology Letters, 2018, 285, 34-42.	0.8	11
40	Prepubertal overexposure to manganese induce precocious puberty through GABAA receptor/nitric oxide pathway in immature female rats. Ecotoxicology and Environmental Safety, 2020, 188, 109898.	6.0	11
41	The effects of mTOR or Vps34-mediated autophagy on methylmercury-induced neuronal apoptosis in rat cerebral cortex. Food and Chemical Toxicology, 2021, 155, 112386.	3.6	11
42	Advances on the Influence of Methylmercury Exposure during Neurodevelopment. Chemical Research in Toxicology, 2022, 35, 43-58.	3.3	11
43	Manganese exposure disrupts SNARE protein complexâ€mediated vesicle fusion in primary cultured neurons. Environmental Toxicology, 2017, 32, 705-716.	4.0	9
44	The Roles of Oxidative Stress in Regulating Autophagy in Methylmercury-induced Neurotoxicity. Neuroscience, 2021, 469, 175-190.	2.3	9
45	Protective role of m6A binding protein YTHDC2 on CCNB2 in manganese-induced spermatogenesis dysfunction. Chemico-Biological Interactions, 2022, 351, 109754.	4.0	8
46	Fluoxetine and Riluzole Mitigates Manganese-Induced Disruption of Glutamate Transporters and Excitotoxicity via Ephrin-A3/GLAST-GLT-1/Glu Signaling Pathway in Striatum of Mice. Neurotoxicity Research, 2020, 38, 508-523.	2.7	6
47	<i>Drosophila</i> carrying epilepsy-associated variants in the vitamin B6 metabolism gene <i>PNPO</i> display allele- and diet-dependent phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6
48	Shedding New Light on Methylmercury-induced Neurotoxicity Through the Crosstalk Between Autophagy and Apoptosis. Toxicology Letters, 2022, , .	0.8	5
49	Unbalanced ERâ€mitochondrial calcium homeostasis promotes mitochondrial dysfunction and associated apoptotic pathways activation in methylmercury exposed rat cortical neurons. Journal of Biochemical and Molecular Toxicology, 2022, 36,	3.0	4
50	Suppression of axonal attractant netrin-1 injured dopaminergic neuronal and motor function of mice during manganese overexposure. Metallomics, 2022, 14, .	2.4	1