Simon J Teat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2162432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A {Ni ₁₂ }â€Wheelâ€Based Metal–Organic Framework for Coordinative Binding of Sulphur Dioxide and Nitrogen Dioxide. Angewandte Chemie - International Edition, 2022, 61, e202115585.	13.8	12
2	A {Ni ₁₂ }â€Wheelâ€Based Metal–Organic Framework for Coordinative Binding of Sulphur Dioxide and Nitrogen Dioxide. Angewandte Chemie, 2022, 134, .	2.0	1
3	Achieving a blue-excitable yellow-emitting Ca-LMOF phosphor <i>via</i> water induced phase transformation. Chemical Science, 2022, 13, 1375-1381.	7.4	2
4	Facile Synthetic Routes to Bridge-Functionalised Calix[4]arenes. Chemical Communications, 2022, , .	4.1	0
5	Simultaneous enhancement of thermally activated delayed fluorescence and photoluminescence quantum yield <i>via</i> homoconjugation. Journal of Materials Chemistry C, 2022, 10, 6306-6313.	5.5	7
6	Robust dicopper(<scp>i</scp>) μ-boryl complexes supported by a dinucleating naphthyridine-based ligand. Chemical Science, 2022, 13, 6619-6625.	7.4	8
7	Tailoring the cavities of hydrogen-bonded amphidynamic crystals using weak contacts: towards faster molecular machines. Chemical Science, 2021, 12, 2181-2188.	7.4	13
8	Lithium calix[4]arenes: structural studies and use in the ring opening polymerization of cyclic esters. RSC Advances, 2021, 11, 11304-11317.	3.6	9
9	Using geometric simulation software â€~GASP' to model conformational flexibility in a family of zinc metal–organic frameworks. New Journal of Chemistry, 2021, 45, 8728-8737.	2.8	2
10	Accessing Lanthanideâ€ŧo‣anthanide Energy Transfer in a Family of Siteâ€Resolved [Ln III Ln III ′] Heterodimetallic Complexes. Chemistry - A European Journal, 2021, 27, 7288-7299.	3.3	8
11	Fluorescent Detection of Carbon Disulfide by a Highly Emissive and Robust Isoreticular Series of Zr-Based Luminescent Metal Organic Frameworks (LMOFs). Chemistry, 2021, 3, 327-337.	2.2	11
12	Diversity-oriented synthesis of polymer membranes with ion solvation cages. Nature, 2021, 592, 225-231.	27.8	83
13	Single crystals of mechanically entwined helical covalent polymers. Nature Chemistry, 2021, 13, 660-665.	13.6	82
14	Two-Dimensional Copper lodide-Based Inorganic–Organic Hybrid Semiconductors: Synthesis, Structures, and Optical and Transport Properties. Chemistry of Materials, 2021, 33, 5317-5325.	6.7	26
15	Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by Host–Guest Interactions. Angewandte Chemie, 2021, 133, 15669-15675.	2.0	11
16	Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by Host–Guest Interactions. Angewandte Chemie - International Edition, 2021, 60, 15541-15547.	13.8	51
17	Flexible Zn-MOF with Rare Underlying <i>scu</i> Topology for Effective Separation of C6 Alkane Isomers. ACS Applied Materials & Interfaces, 2021, 13, 51997-52005.	8.0	22
18	Pyrene-fused hexaarylbenzene luminogens: Synthesis, characterization, and aggregation-induced emission enhancement. Dyes and Pigments, 2021, 192, 109452.	3.7	9

#	Article	IF	CITATIONS
19	A switchable sensor and scavenger: detection and removal of fluorinated chemical species by a luminescent metal–organic framework. Chemical Science, 2021, 12, 14189-14197.	7.4	26
20	Copper(I) iodide-based organic–inorganic hybrid compounds as phosphor materials. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, 76, 759-764.	0.7	6
21	Regioselective formylation of rhenium-oxo and gold corroles: substituent effects on optical spectra and redox potentials. RSC Advances, 2021, 11, 34086-34094.	3.6	8
22	Solution-processable and functionalizable ultra-high molecular weight polymers via topochemical synthesis. Nature Communications, 2021, 12, 6818.	12.8	30
23	Rational design of a high-efficiency, multivariate metal–organic framework phosphor for white LED bulbs. Chemical Science, 2020, 11, 1814-1824.	7.4	43
24	Gold dipyrrin-bisphenolates: a combined experimental and DFT study of metal–ligand interactions. RSC Advances, 2020, 10, 533-540.	3.6	12
25	Eco-friendly, solution-processable and efficient low-energy lighting phosphors: copper halide based hybrid semiconductors Cu ₄ X ₆ (L) ₂ (X = Br, I) composed of covalent, ionic and coordinate bonds. Journal of Materials Chemistry C, 2020, 8, 16790-16797.	5.5	24
26	A nature-inspired hydrogen-bonded supramolecular complex for selective copper ion removal from water. Nature Communications, 2020, 11, 3947.	12.8	86
27	Magneto-structural studies of an unusual [Mn ^{III} Mn ^{II} Gd ^{III} (OR) ₄] ^{4â^'} partial cubane from 2,2′-bis- <i>p</i> - ^t Bu-calix[4]arene. Dalton Transactions, 2020, 49, 14790-14797.	3.3	7
28	Monosulfonated Azo Dyes: A Crystallographic Study of the Molecular Structures of the Free Acid, Anionic and Dianionic Forms. Crystals, 2020, 10, 662.	2.2	12
29	Leading Edge Chemical Crystallography Service Provision and Its Impact on Crystallographic Data Science in the Twenty-First Century. Structure and Bonding, 2020, , 69-140.	1.0	3
30	Adsorption of Fluorocarbons and Chlorocarbons by Highly Porous and Robust Fluorinated Zirconium Metal–Organic Frameworks. Inorganic Chemistry, 2020, 59, 4167-4171.	4.0	23
31	A highly substituted pyrazinophane generated from a quinoidal system <i>via</i> a cascade reaction. Chemical Communications, 2020, 56, 4472-4475.	4.1	9
32	Pressure-induced inclusion of neon in the crystal structure of a molecular Cu2(pacman) complex at 4.67 GPa. Chemical Communications, 2020, 56, 3449-3452.	4.1	2
33	Blending Ionic and Coordinate Bonds in Hybrid Semiconductor Materials: A General Approach toward Robust and Solution-Processable Covalent/Coordinate Network Structures. Journal of the American Chemical Society, 2020, 142, 4242-4253.	13.7	72
34	Time-resolved luminescence detection of peroxynitrite using a reactivity-based lanthanide probe. Chemical Science, 2020, 11, 3164-3170.	7.4	41
35	Structural properties of ultra-small thorium and uranium dioxide nanoparticles embedded in a covalent organic framework. Chemical Science, 2020, 11, 4648-4668.	7.4	22
36	Materializing rival ground states in the barlowite family of kagome magnets: quantum spin liquid, spin ordered, and valence bond crystal states. Npj Quantum Materials, 2020, 5, .	5.2	37

#	Article	IF	CITATIONS
37	Rhenium-Imido Corroles. Inorganic Chemistry, 2020, 59, 6382-6389.	4.0	13
38	Selective signalling of alcohols by a molecular lattice and mechanism of single-crystal-to-single-crystal transformations. Inorganic Chemistry Frontiers, 2020, 7, 3165-3175.	6.0	10
39	Site-specific structure at multiple length scales in kagome quantum spin liquid candidates. Physical Review Materials, 2020, 4, .	2.4	13
40	Structures of five salt forms of disulfonated monoazo dyes. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 972-981.	0.5	3
41	Materializing rival ground states in the barlowite family of kagome magnets: quantum spin liquid, spin ordered, and valence bond crystal states. Npj Quantum Materials, 2020, 5, .	5.2	4
42	Exploring short strong hydrogen bonds engineered in organic acid molecular crystals for temperature dependent proton migration behaviour using single crystal synchrotron X-ray diffraction (SCSXRD). CrystEngComm, 2019, 21, 5249-5260.	2.6	21
43	Microwave assisted synthesis of heterometallic 3d–4f M ₄ Ln complexes. Dalton Transactions, 2019, 48, 12440-12450.	3.3	19
44	Electronic Tuning of Mixed Quinoidalâ€Aromatic Conjugated Polyelectrolytes: Direct Ionic Substitution on Polymer Main hains. Angewandte Chemie - International Edition, 2019, 58, 17978-17985.	13.8	32
45	Blue-Light-Excitable, Quantum Yield Enhanced, Yellow-Emitting, Zirconium-Based Metal–Organic Framework Phosphors Formed by Immobilizing Organic Chromophores. Crystal Growth and Design, 2019, 19, 6850-6854.	3.0	13
46	High-pressure polymorphism in l-threonine between ambient pressure and 22 GPa. CrystEngComm, 2019, 21, 4444-4456.	2.6	27
47	A switchable iron-based coordination polymer toward reversible acetonitrile electro-optical readout. Chemical Science, 2019, 10, 6612-6616.	7.4	26
48	Click chemistry as a route to the synthesis of structurally new and magnetically interesting coordination clusters: a {Nill8} complex with a trapezoidal prismatic topology. Dalton Transactions, 2019, 48, 11632-11636.	3.3	4
49	The Effect of Pressure on Halogen Bonding in 4-lodobenzonitrile. Molecules, 2019, 24, 2018.	3.8	11
50	Highly efficient and very robust blue-excitable yellow phosphors built on multiple-stranded one-dimensional inorganic–organic hybrid chains. Chemical Science, 2019, 10, 5363-5372.	7.4	38
51	Supramolecular architectures of molecularly thin yet robust free-standing layers. Science Advances, 2019, 5, eaav4489.	10.3	9
52	Improving LMOF luminescence quantum yield through guest-mediated rigidification. Journal of Materials Chemistry C, 2019, 7, 14739-14744.	5.5	17
53	Investigations into the assembly behaviour of a â€~rigidified' p-carboxylatocalix[4]arene. CrystEngComm, 2019, 21, 6659-6665.	2.6	1
54	Designed asymmetric coordination helicates with bis-Î ² -diketonate ligands. Dalton Transactions, 2019, 48, 16844-16847.	3.3	8

#	Article	IF	CITATIONS
55	Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework. Nature Chemistry, 2019, 11, 1085-1090.	13.6	116
56	Reversible coordinative binding and separation of sulfur dioxide in a robust metal–organic framework with open copper sites. Nature Materials, 2019, 18, 1358-1365.	27.5	171
57	A Threeâ€Dimensional Dynamic Supramolecular "Sticky Fingers―Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 2310-2315.	13.8	16
58	Exploratory studies into 3d/4f cluster formation with fully bridge-substituted calix[4]arenes. Supramolecular Chemistry, 2018, 30, 504-509.	1.2	7
59	Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nature Communications, 2018, 9, 1745.	12.8	251
60	High-temperature magnetic blocking and magneto-structural correlations in a series of dysprosium(<scp>iii</scp>) metallocenium single-molecule magnets. Chemical Science, 2018, 9, 8492-8503.	7.4	405
61	Encapsulation of a Cr III Singleâ€lon Magnet within an Fe II Spin rossover Supramolecular Host. Angewandte Chemie, 2018, 130, 13697-13701.	2.0	7
62	Encapsulation of a Cr ^{III} Singleâ€Ion Magnet within an Fe ^{II} Spinâ€Crossover Supramolecular Host. Angewandte Chemie - International Edition, 2018, 57, 13509-13513.	13.8	48
63	In situ redox reactions facilitate the assembly of a mixed-valence metal-organic nanocapsule. Nature Communications, 2018, 9, 2119.	12.8	19
64	Complexation-assisted reduction: complexes of glutaroimide-dioxime with tetravalent actinides (Np(<scp>iv</scp>) and Th(<scp>iv</scp>)). Dalton Transactions, 2018, 47, 8134-8141.	3.3	17
65	Tuning charge-assisted and weak hydrogen bonds in molecular complexes of the proton sponge DMAN by acid co-former substitution. CrystEngComm, 2018, 20, 3074-3083.	2.6	4
66	Selective Lanthanide Distribution within a Comprehensive Series of Heterometallic [LnPr] Complexes. Inorganic Chemistry, 2018, 57, 8429-8439.	4.0	21
67	Solvent Dependent Disorder in M2(BzOip)2(H2O)·Solvate (M = Co or Zn). Crystals, 2018, 8, 6.	2.2	1
68	A Hexahomotrioxacalix[3]arene-Based Ditopic Receptor for Alkylammonium Ions Controlled by Ag+ Ions. Molecules, 2018, 23, 467.	3.8	3
69	Hydrolytic stability in hemilabile metal–organic frameworks. Nature Chemistry, 2018, 10, 1096-1102.	13.6	134
70	A Spin-Crossover Molecular Material Describing Four Distinct Thermal Pathways. Inorganic Chemistry, 2018, 57, 11019-11026.	4.0	19
71	Postâ€5ynthetic Mannich Chemistry on Metalâ€Organic Frameworks: Systemâ€5pecific Reactivity and Functionalityâ€Triggered Dissolution. Chemistry - A European Journal, 2018, 24, 11094-11102	3.3	11
72	Cyanide-bridged coordination polymers constructed from lanthanide ions and octacyanometallate building-blocks. Inorganic Chemistry Frontiers, 2018, 5, 1967-1977.	6.0	10

#	Article	IF	CITATIONS
73	Thermodynamic Stability of Heterodimetallic [LnLn′] Complexes: Synthesis and DFT Studies. Chemistry - A European Journal, 2017, 23, 5117-5125.	3.3	19
74	A mechanochemical route toward the rational, systematic, and cost-effective green synthesis of strongly luminescent copper iodide based hybrid phosphors. Journal of Materials Chemistry C, 2017, 5, 5962-5969.	5.5	42
75	Guest-tuned spin crossover in flexible supramolecular assemblies templated by a halide (Cl ^{â^'} , Br ^{â^'} or I ^{â^'}). Chemical Communications, 2017, 53, 569-572.	4.1	18
76	Molecules Designed to Contain Two Weakly Coupled Spins with a Photoswitchable Spacer. Chemistry - A European Journal, 2017, 23, 13648-13659.	3.3	22
77	All-in-One: Achieving Robust, Strongly Luminescent and Highly Dispersible Hybrid Materials by Combining Ionic and Coordinate Bonds in Molecular Crystals. Journal of the American Chemical Society, 2017, 139, 9281-9290.	13.7	146
78	<i>para</i> -Azaquinodimethane: A Compact Quinodimethane Variant as an Ambient Stable Building Block for High-Performance Low Band Gap Polymers. Journal of the American Chemical Society, 2017, 139, 8355-8363.	13.7	65
79	A Systematic Approach to Achieving High Performance Hybrid Lighting Phosphors with Excellent Thermal―and Photostability. Advanced Functional Materials, 2017, 27, 1603444.	14.9	125
80	Chiral transcription in self-assembled tetrahedral Eu4L6 chiral cages displaying sizable circularly polarized luminescence. Nature Communications, 2017, 8, 1128.	12.8	128
81	A Magnetoâ€optical Molecular Device: Interplay of Spin Crossover, Luminescence, Photomagnetism, and Photochromism. Angewandte Chemie, 2017, 129, 15828-15833.	2.0	25
82	A Magnetoâ€optical Molecular Device: Interplay of Spin Crossover, Luminescence, Photomagnetism, and Photochromism. Angewandte Chemie - International Edition, 2017, 56, 15622-15627.	13.8	117
83	A New Family of 3 <i>d</i> –4 <i>f</i> Bis alix[4]arene‣upported Clusters. Chemistry - A European Journal, 2017, 23, 14073-14079.	3.3	17
84	The remarkable influence of <i>N</i> , <i>O</i> -ligands in the assembly of a bis-calix[4]arene-supported [MnIV2MnIII10MnII8] cluster. Dalton Transactions, 2017, 46, 16807-16811.	3.3	11
85	A rapidly-reversible absorptive and emissive vapochromic Pt(II) pincer-based chemical sensor. Nature Communications, 2017, 8, 1800.	12.8	83
86	Chemical Crystallography at the Advanced Light Source. Crystals, 2017, 7, 382.	2.2	6
87	A High Pressure Investigation of the Order-Disorder Phase Transition and Accompanying Spin Crossover in [FeL12](ClO4)2 (L1 = 2,6-bis{3-methylpyrazol-1-yl}-pyrazine). Magnetochemistry, 2016, 2, 9.	2.4	13
88	Comparative Magnetic Studies in the Solid State and Solution of Two Isostructural 1D Coordination Polymers Containing Coll/Nill-Curcuminoid Moieties. Magnetochemistry, 2016, 2, 29.	2.4	3
89	Bis alix[4]arenes: From Ligand Design to the Directed Assembly of a Metal–Organic Trigonal Antiprism. Chemistry - A European Journal, 2016, 22, 8791-8795.	3.3	9
90	Structural diversity in Ni ^{II} cluster chemistry: Ni ₅ , Ni ₆ , and {NiNa ₂ } _n complexes bearing the Schiff-base ligand N-naphthalidene-2-amino-5-chlorobenzoic acid. Dalton Transactions, 2016, 45, 10256-10270.	3.3	15

#	Article	IF	CITATIONS
91	Homoleptic versus Heteroleptic Formation of Mononuclear Fe(II) Complexes with Tris-Imine Ligands. Inorganic Chemistry, 2016, 55, 4110-4116.	4.0	28
92	Investigating Reaction Conditions To Control the Self-Assembly of Cobalt-Seamed Nanocapsules. Crystal Growth and Design, 2016, 16, 3562-3564.	3.0	29
93	A study of anion binding behaviour of 1,3-alternate thiacalix[4]arene-based receptors bearing urea moieties. New Journal of Chemistry, 2016, 40, 9245-9251.	2.8	10
94	Thiacalix[4]arene Derivatives Bearing Imidazole Units: A Ditopic Hard/Soft Receptor for Na ⁺ and K ⁺ /Ag ⁺ with an Allosteric Effect and a Reusable Extractant for Dichromate Anions. ChemistrySelect, 2016, 1, 1541-1547.	1.5	7
95	A fluorescence study on the complexation of Sm(<scp>iii</scp>), Eu(<scp>iii</scp>) and Tb(<scp>iii</scp>) with tetraalkyldiglycolamides (TRDGA) in aqueous solution, in solid state, and in solvent extraction. Dalton Transactions, 2016, 45, 18484-18493.	3.3	29
96	Chromophore-immobilized luminescent metal–organic frameworks as potential lighting phosphors and chemical sensors. Chemical Communications, 2016, 52, 10249-10252.	4.1	70
97	Core expansion of bis-calix[4]arene-supported clusters. Chemical Communications, 2016, 52, 14246-14249.	4.1	13
98	Guest― Light―and Thermallyâ€Modulated Spin Crossover in [Fe ^{II} ₂] Supramolecular Helicates. Chemistry - A European Journal, 2016, 22, 8635-8645.	3.3	46
99	Chromophore-Based Luminescent Metal–Organic Frameworks as Lighting Phosphors. Inorganic Chemistry, 2016, 55, 7250-7256.	4.0	74
100	High-Performance Blue-Excitable Yellow Phosphor Obtained from an Activated Solvochromic Bismuth-Fluorophore Metal–Organic Framework. Crystal Growth and Design, 2016, 16, 4178-4182.	3.0	50
101	Complexation of Lanthanides with Glutaroimide-dioxime: Binding Strength and Coordination Modes. Inorganic Chemistry, 2016, 55, 1315-1323.	4.0	19
102	Investigations into cluster formation with alkyl-tethered bis-calix[4]arenes. Supramolecular Chemistry, 2016, 28, 557-566.	1.2	9
103	Structural and spectroscopic studies of a rare non-oxido V(<scp>v</scp>) complex crystallized from aqueous solution. Chemical Science, 2016, 7, 2775-2786.	7.4	47
104	Facile Interchange of 3d and 4f Ions in Singleâ€Molecule Magnets: Stepwise Assembly of [Mn ₄], [Mn ₃ Ln] and [Mn ₂ Ln ₂] Cages within Calix[4]arene Scaffolds. Chemistry - A European Journal, 2015, 21, 11212-11218.	3.3	35
105	Novel Topologies in Vanadium-bis-β-Diketone Chemistry: A [V4] and a [V6] Metallacyclophane. Magnetochemistry, 2015, 1, 45-61.	2.4	8
106	The first study about the relationship between the extractability of thiacalix[4]arene derivatives and the position of the coordination binding sites. Organic and Biomolecular Chemistry, 2015, 13, 3476-3483.	2.8	9
107	Achieving exceptionally high luminescence quantum efficiency by immobilizing an AIE molecular chromophore into a metal–organic framework. Chemical Communications, 2015, 51, 3045-3048.	4.1	148
108	Positive and negative allosteric effects of thiacalix[4]arene-based receptors having urea andÂcrown-ether moieties. RSC Advances, 2015, 5, 14747-14755.	3.6	13

#	Article	IF	CITATIONS
109	Linked Supramolecular Building Blocks for Enhanced Cluster Formation. Chemistry - A European Journal, 2015, 21, 2804-2812.	3.3	20
110	A Family of Highly Efficient Cul-Based Lighting Phosphors Prepared by a Systematic, Bottom-up Synthetic Approach. Journal of the American Chemical Society, 2015, 137, 9400-9408.	13.7	211
111	A structural and spectrophotometric study on the complexation of Am(<scp>iii</scp>) with TMOGA in comparison with the extracted complex of DMDOOGA. Dalton Transactions, 2015, 44, 18469-18474.	3.3	39
112	A facile single crystal to single crystal transition with significant structural contraction on desolvation. Chemical Communications, 2014, 50, 14436-14439.	4.1	19
113	Solution Processable MOF Yellow Phosphor with Exceptionally High Quantum Efficiency. Journal of the American Chemical Society, 2014, 136, 16724-16727.	13.7	254
114	Salt formation affects the conformational and assembly properties of p-carboxylatocalix[4]arenes. CrystEngComm, 2014, 16, 3712-3717.	2.6	10
115	Three-Way Crystal-to-Crystal Reversible Transformation and Controlled Spin Switching by a Nonporous Molecular Material. Journal of the American Chemical Society, 2014, 136, 3869-3874.	13.7	176
116	Heterodimetallic [LnLn′] Lanthanide Complexes: Toward a Chemical Design of Two-Qubit Molecular Spin Quantum Gates. Journal of the American Chemical Society, 2014, 136, 14215-14222.	13.7	201
117	Structural and Thermodynamic Study of the Complexes of Nd(III) with <i>N</i> , <i>N</i> , <i>N</i> , <i>N</i> , 3€²-, 100 cm structure for the formation of the forma	4.0	47
118	Unusual Crystal Packing in a Family of [Fe{2,6-bis(pyrazol-3-yl)pyridine}2]2+Compounds and the Effect on the Occurrence of Spin Crossover and Its Cooperative Character. European Journal of Inorganic Chemistry, 2014, 2014, 6013-6021.	2.0	20
119	Enhancing Strategies for the Assembly of Metal–Organic Systems with Inherent Cavity-Containing Calix[4]arenes. Crystal Growth and Design, 2013, 13, 5165-5168.	3.0	16
120	From 1D Chain to 3D Network: A New Family of Inorganic–Organic Hybrid Semiconductors MO ₃ (L) _{<i>x</i>} (M = Mo, W; L = Organic Linker) Built on Perovskite-like Structure Modules. Journal of the American Chemical Society, 2013, 135, 17401-17407.	13.7	47
121	Polynuclear pyridyldioximato-nickel(II) clusters: Synthesis, structure and magnetic study. Polyhedron, 2013, 52, 339-345.	2.2	5
122	Directed assembly via selectively positioned host functionality. Chemical Communications, 2013, 49, 3203.	4.1	20
123	Lanthanide Contraction within a Series of Asymmetric Dinuclear [Ln ₂] Complexes. Chemistry - A European Journal, 2013, 19, 5881-5891.	3.3	84
124	Microwave assisted synthesis in coordination chemistry. Polyhedron, 2013, 52, 781-787.	2.2	17
125	New Nanostructured Materials: Synthesis of Dodecanuclear Ni ^{II} Complexes and Surface Deposition Studies. Chemistry - A European Journal, 2013, 19, 9064-9071.	3.3	19
126	Calix[4]arene-supported rare earth octahedra. Chemical Communications, 2012, 48, 1449-1451.	4.1	65

#	Article	IF	CITATIONS
127	Pyridine Directed Assembly of Di-O-Alkyl-tris-p-Carboxylatocalix[4]arenes. Crystal Growth and Design, 2012, 12, 688-697.	3.0	17
128	Pyridine Directed Assembly of Tetra-O-Alkyl p-Carboxylatocalix[4]arenes. Crystal Growth and Design, 2012, 12, 679-687.	3.0	16
129	Sequestering uranium from seawater: binding strength and modes of uranyl complexes with glutarimidedioxime. Dalton Transactions, 2012, 41, 11579.	3.3	156
130	119, the small-molecule single-crystal diffraction beamline at Diamond Light Source. Journal of Synchrotron Radiation, 2012, 19, 435-441.	2.4	123
131	Coordination Polymer Chains of Dimeric Pyrogallol[4]arene Capsules. Journal of the American Chemical Society, 2011, 133, 11069-11071.	13.7	67
132	Calixarenenanotubes: structural tolerance towards pyridine templates. New Journal of Chemistry, 2011, 35, 28-31.	2.8	18
133	A Family of Calix[4]arene‧upported [Mn ^{III} ₂ Mn ^{II} ₂] Clusters. Chemistry - A European Journal, 2011, 17, 7521-7530.	3.3	74
134	[Mn ^{III} ₄ Ln ^{III} ₄] Calix[4]arene Clusters as Enhanced Magnetic Coolers and Molecular Magnets. Journal of the American Chemical Society, 2010, 132, 12983-12990.	13.7	278
135	Metal–Organic Calixarene Nanotubes. Angewandte Chemie - International Edition, 2010, 49, 4205-4208.	13.8	61
136	A Most Unusual Zeolite Templating: Cage to Cage Connection of One Guest Molecule. Journal of Physical Chemistry C, 2010, 114, 8899-8904.	3.1	7
137	Synthesis and Properties of a Family of Unsymmetric Dinuclear Complexes of Ln ^{III} (Ln = Eu,) Tj ETQq	4.0.7843	314 rgBT /C
138	Combining Azide, Carboxylate, and 2-Pyridyloximate Ligands in Transition-Metal Chemistry: Ferromagnetic Nill5Clusters with a Bowtie Skeleton. Inorganic Chemistry, 2010, 49, 10486-10496.	4.0	76
139	Versatile assembly of p-carboxylatocalix[4]arene-O-alkyl ethers. Dalton Transactions, 2010, 39, 384-387.	3.3	21
140	Quest for Environmentally Benign Ligands for Actinide Separations: Thermodynamic, Spectroscopic, and Structural Characterization of U ^{VI} Complexes with Oxaâ€Điamide and Related Ligands. Chemistry - A European Journal, 2009, 15, 4172-4181.	3.3	68
141	Designed Topology and Siteâ€Selective Metal Composition in Tetranuclear [MM′â‹â‹â‹M′M] Linear Co Chemistry - A European Journal, 2009, 15, 11235-11243.	mplexes.	41
142	Calix[4]areneâ€Based Singleâ€Molecule Magnets. Angewandte Chemie - International Edition, 2009, 48, 8285-8288.	13.8	109
143	Enhanced control over metal composition in mixed Ga/Zn and Ga/Cu coordinated pyrogallol[4]arene nanocapsules. Chemical Communications, 2009, , 3348.	4.1	53
144	Employment of methyl 2-pyridyl ketone oxime in manganese non-carboxylate chemistry: MnII2MnIV and MnII2MnII6 complexes. Dalton Transactions, 2009, , 1004.	3.3	39

#	Article	IF	CITATIONS
145	Synthesis and properties of a novel linear [Ni4L2(py)6] cluster: Designed ligand-controlled topology of the metals. Comptes Rendus Chimie, 2008, 11, 1117-1120.	0.5	16
146	Molecules Composed of Two Weakly Magnetically Coupled [MnIII4] Clusters. Inorganic Chemistry, 2007, 46, 9045-9047.	4.0	55
147	Use of the Sulfato Ligand in 3d-Metal Cluster Chemistry: A Family of Hexanuclear Nickel(II) Complexes with 2-Pyridyl-Substituted Oxime Ligands. European Journal of Inorganic Chemistry, 2007, 2007, 2761-2774.	2.0	54
148	A rare mixed-valence state manganese(II/IV) tetranuclear cage formed using phenyl 2-pyridyl ketone oxime and azide as ligands. Inorganic Chemistry Communication, 2006, 9, 638-641.	3.9	39
149	A family of heterometallic wheels containing potentially fourteen hundred siblings. Chemical Communications, 2005, , 1125-1127.	4.1	59
150	Phosphonate Ligands Stabilize Mixed-Valent {MnIII20â^'xMnIIx} Clusters with Large Spin and Coercivity. Angewandte Chemie - International Edition, 2005, 44, 5044-5048.	13.8	233
151	Supramolecular Motifs in s-Block Metal-Bound Sulfonated Monoazo Dyes, Part 1: Structural Class Controlled by Cation Type and Modulated by Sulfonate Aryl Ring Position. Chemistry - A European Journal, 2004, 10, 4606-4615.	3.3	77
152	Incorporation of sulfonate dyes into hydrogen-bonded networks. CrystEngComm, 2004, 6, 429.	2.6	37
153	Supramolecular motifs in s-block metal bound sulfonated monoazo dyes. Dalton Transactions RSC, 2001, , 2199-2205.	2.3	40
154	The First Red Azo Lake Pigment whose Structure is Characterized by Single Crystal Diffraction. Angewandte Chemie - International Edition, 2000, 39, 638-640.	13.8	48
155	A mixed lithium–strontium polynuclear complex formed within the hexa-deprotonated calix[8]arene framework; the synthesis and structure of Li4Sr2(H2L)(O2CC4H9)2(dmf )8 [H8Lâ€=â€p-Pri- or p-Bui-calix[8]arene] â€. Journal of the Chemical Society Dalton Transactions, 1999, , 3535-3536.	1.1	14
156	A New High-Flux Chemical and Materials Crystallography Station at the SRS Daresbury. 1. Design, Construction and Test Results. Journal of Synchrotron Radiation, 1997, 4, 279-286.	2.4	171
157	Allosteric binding properties of a 1,3-alternate thiacalix[4]arene-based receptor having phenylthiourea and 2-pyridylmethyl moieties on opposite faces. New Journal of Chemistry, 0, , .	2.8	4
158	Three Individually Addressable Spin Qubits in a Single Molecule. Chemical Communications, 0, , .	4.1	1