


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2162418/publications.pdf Version: 2024-02-01



Χινι Τανι

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Isolated Diatomic Niâ€Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO <sub>2</sub> .<br>Angewandte Chemie - International Edition, 2019, 58, 6972-6976.                              | 7.2  | 707       |
| 2  | Structural and Electronic Properties of Layered Arsenic and Antimony Arsenide. Journal of Physical Chemistry C, 2015, 119, 6918-6922.                                                               | 1.5  | 210       |
| 3  | Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nature Communications, 2020, 11, 4181.                                                                    | 5.8  | 204       |
| 4  | A Janus MoSSe monolayer: a superior and strain-sensitive gas sensing material. Journal of Materials<br>Chemistry A, 2019, 7, 1099-1106.                                                             | 5.2  | 187       |
| 5  | Tuning electronic and optical properties of MoS <sub>2</sub> monolayer via molecular charge transfer. Journal of Materials Chemistry A, 2014, 2, 16892-16897.                                       | 5.2  | 145       |
| 6  | A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nature<br>Catalysis, 2022, 5, 231-237.                                                                     | 16.1 | 133       |
| 7  | Intrinsic ORR Activity Enhancement of Pt Atomic Sites by Engineering the <i>d</i> â€Band Center via Local<br>Coordination Tuning. Angewandte Chemie - International Edition, 2021, 60, 21911-21917. | 7.2  | 132       |
| 8  | Electroreduction of CO <sub>2</sub> to CO on a Mesoporous Carbon Catalyst with Progressively<br>Removed Nitrogen Moieties. ACS Energy Letters, 2018, 3, 2292-2298.                                  | 8.8  | 129       |
| 9  | Atomically Dispersed Indium Sites for Selective CO <sub>2</sub> Electroreduction to Formic Acid. ACS Nano, 2021, 15, 5671-5678.                                                                     | 7.3  | 121       |
| 10 | Isolated copper–tin atomic interfaces tuning electrocatalytic CO2 conversion. Nature<br>Communications, 2021, 12, 1449.                                                                             | 5.8  | 119       |
| 11 | Templateâ€Ðirected Rapid Synthesis of Pdâ€Based Ultrathin Porous Intermetallic Nanosheets for Efficient<br>Oxygen Reduction. Angewandte Chemie - International Edition, 2021, 60, 10942-10949.      | 7.2  | 115       |
| 12 | Implanting Ni-O-VOx sites into Cu-doped Ni for low-overpotential alkaline hydrogen evolution. Nature<br>Communications, 2020, 11, 2720.                                                             | 5.8  | 113       |
| 13 | Controllable CO2 electrocatalytic reduction via ferroelectric switching on single atom anchored<br>In2Se3 monolayer. Nature Communications, 2021, 12, 5128.                                         | 5.8  | 110       |
| 14 | Phosphine vapor-assisted construction of heterostructured Ni <sub>2</sub> P/NiTe <sub>2</sub><br>catalysts for efficient hydrogen evolution. Energy and Environmental Science, 2020, 13, 1799-1807. | 15.6 | 105       |
| 15 | Sulfurâ€Dopantâ€Promoted Electroreduction of CO <sub>2</sub> over Coordinatively Unsaturated<br>Niâ€N <sub>2</sub> Moieties. Angewandte Chemie - International Edition, 2021, 60, 23342-23348.      | 7.2  | 98        |
| 16 | Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nature Communications, 2022, 13, 2430.                                                     | 5.8  | 98        |
| 17 | Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO <sub>2</sub><br>Reduction. Angewandte Chemie - International Edition, 2020, 59, 21493-21498.                    | 7.2  | 97        |
| 18 | Formation and Migration of Oxygen Vacancies in SrCoO <sub>3</sub> and Their Effect on Oxygen Evolution Reactions. ACS Catalysis, 2016, 6, 5565-5570.                                                | 5.5  | 96        |

| #  | Article                                                                                                                                                                                              | lF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Processable Surface Modification of Nickelâ€Heteroatom (N, S) Bridge Sites for Promoted Alkaline<br>Hydrogen Evolution. Angewandte Chemie - International Edition, 2019, 58, 461-466.                | 7.2 | 95        |
| 20 | Thermodynamic model of the surface energy of nanocrystals. Physical Review B, 2006, 74, .                                                                                                            | 1.1 | 89        |
| 21 | Borophene as a Promising Material for Charge-Modulated Switchable CO <sub>2</sub> Capture. ACS<br>Applied Materials & Interfaces, 2017, 9, 19825-19830.                                              | 4.0 | 83        |
| 22 | N,P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis.<br>Journal of Materials Chemistry A, 2019, 7, 14732-14742.                                              | 5.2 | 80        |
| 23 | On the mechanism of gas adsorption for pristine, defective and functionalized graphene. Physical<br>Chemistry Chemical Physics, 2017, 19, 6051-6056.                                                 | 1.3 | 73        |
| 24 | Tungsten Oxide/Carbide Surface Heterojunction Catalyst with High Hydrogen Evolution Activity. ACS<br>Energy Letters, 2020, 5, 3560-3568.                                                             | 8.8 | 70        |
| 25 | Interfacing BiVO 4 with Reduced Graphene Oxide for Enhanced Photoactivity: A Tale of Facet<br>Dependence of Electron Shuttling. Small, 2016, 12, 5295-5302.                                          | 5.2 | 68        |
| 26 | The controlled disassembly of mesostructured perovskites as an avenue to fabricating high performance nanohybrid catalysts. Nature Communications, 2017, 8, 15553.                                   | 5.8 | 65        |
| 27 | Isolated Diatomic Niâ€Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO <sub>2</sub> .<br>Angewandte Chemie, 2019, 131, 7046-7050.                                                      | 1.6 | 65        |
| 28 | Metallic BSi <sub>3</sub> Silicene: A Promising High Capacity Anode Material for Lithium-Ion Batteries.<br>Journal of Physical Chemistry C, 2014, 118, 25836-25843.                                  | 1.5 | 62        |
| 29 | p-Doped Graphene/Graphitic Carbon Nitride Hybrid Electrocatalysts: Unraveling Charge Transfer<br>Mechanisms for Enhanced Hydrogen Evolution Reaction Performance. ACS Catalysis, 2016, 6, 7071-7077. | 5.5 | 62        |
| 30 | First-principles study of structural, electronic, and multiferroic properties in BiCoO3. Journal of Chemical Physics, 2007, 126, 154708.                                                             | 1.2 | 60        |
| 31 | Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2<br>Capture. Scientific Reports, 2015, 5, 17636.                                                     | 1.6 | 60        |
| 32 | The origin of low workfunctions in OH terminated MXenes. Nanoscale, 2017, 9, 7016-7020.                                                                                                              | 2.8 | 59        |
| 33 | Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energyâ€Efficient<br>CO <sub>2</sub> Electroreduction. Angewandte Chemie - International Edition, 2022, 61, .      | 7.2 | 57        |
| 34 | Confinement of Ionic Liquids at Single-Ni-Sites Boost Electroreduction of CO <sub>2</sub> in Aqueous<br>Electrolytes. ACS Catalysis, 2020, 10, 13171-13178.                                          | 5.5 | 54        |
| 35 | An Ultra-Long-Life Flexible Lithium–Sulfur Battery with Lithium Cloth Anode and<br>Polysulfone-Functionalized Separator. ACS Nano, 2021, 15, 1358-1369.                                              | 7.3 | 53        |
| 36 | Conductive Boron-Doped Graphene as an Ideal Material for Electrocatalytically Switchable and<br>High-Capacity Hydrogen Storage. ACS Applied Materials & Interfaces, 2016, 8, 32815-32822.            | 4.0 | 52        |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Understanding the high activity of mildly reduced graphene oxide electrocatalysts in oxygen reduction to hydrogen peroxide. Materials Horizons, 2019, 6, 1409-1415.                                                                         | 6.4  | 51        |
| 38 | Regulating electron transfer over asymmetric low-spin Co(II) for highly selective electrocatalysis.<br>Chem Catalysis, 2022, 2, 372-385.                                                                                                    | 2.9  | 50        |
| 39 | Mobile Polaronic States in α-MoO <sub>3</sub> : An ab Initio Investigation of the Role of Oxygen<br>Vacancies and Alkali Ions. ACS Applied Materials & Interfaces, 2016, 8, 10911-10917.                                                    | 4.0  | 49        |
| 40 | Stacking-Dependent Interlayer Magnetic Coupling in 2D CrI <sub>3</sub> /CrGeTe <sub>3</sub><br>Nanostructures for Spintronics. ACS Applied Nano Materials, 2020, 3, 1282-1288.                                                              | 2.4  | 47        |
| 41 | Antipoisoning Nickel–Carbon Electrocatalyst for Practical Electrochemical CO <sub>2</sub><br>Reduction to CO. ACS Applied Energy Materials, 2019, 2, 8002-8009.                                                                             | 2.5  | 45        |
| 42 | Layered Graphene–Hexagonal BN Nanocomposites: Experimentally Feasible Approach to Chargeâ€induced<br>Switchable CO <sub>2</sub> Capture. ChemSusChem, 2015, 8, 2987-2993.                                                                   | 3.6  | 43        |
| 43 | Autocatalytic Surface Reductionâ€Assisted Synthesis of PtW Ultrathin Alloy Nanowires for Highly<br>Efficient Hydrogen Evolution Reaction. Advanced Energy Materials, 2022, 12, .                                                            | 10.2 | 40        |
| 44 | Solid solubility limit in alloying nanoparticles. Nanotechnology, 2006, 17, 4257-4262.                                                                                                                                                      | 1.3  | 38        |
| 45 | Metallic BSi <sub>3</sub> Silicene and Its One-Dimensional Derivatives: Unusual Nanomaterials with<br>Planar Aromatic <i>D</i> <sub>6<i>h</i></sub> Six-Membered Silicon Rings. Journal of Physical<br>Chemistry C, 2014, 118, 25825-25835. | 1.5  | 37        |
| 46 | Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High apacity Hydrogen<br>Storage. ChemSusChem, 2015, 8, 3626-3631.                                                                                                | 3.6  | 37        |
| 47 | Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO <sub>2</sub><br>Reduction. Angewandte Chemie, 2020, 132, 21677-21682.                                                                                   | 1.6  | 37        |
| 48 | Physical and chemical origin of size-dependent spontaneous interfacial alloying of core–shell<br>nanostructures. Chemical Physics Letters, 2006, 420, 65-70.                                                                                | 1.2  | 34        |
| 49 | Tetragonal bismuth bilayer: a stable and robust quantum spin hall insulator. 2D Materials, 2015, 2,<br>045010.                                                                                                                              | 2.0  | 34        |
| 50 | Versatile electrocatalytic processes realized by Ni, Co and Fe alloyed core coordinated carbon shells.<br>Journal of Materials Chemistry A, 2019, 7, 12154-12165.                                                                           | 5.2  | 34        |
| 51 | Electrocatalytic Reduction of Carbon Dioxide to Methane on Single Transition Metal Atoms<br>Supported on a Defective Boron Nitride Monolayer: First Principle Study. Advanced Theory and<br>Simulations, 2019, 2, 1800094.                  | 1.3  | 33        |
| 52 | Encapsulated Silicene: A Robust Large-Gap Topological Insulator. ACS Applied Materials &<br>Interfaces, 2015, 7, 19226-19233.                                                                                                               | 4.0  | 31        |
| 53 | Sc and Nb dopants in SrCoO3 modulate electronic and vacancy structures for improved water splitting and SOFC cathodes. Energy Storage Materials, 2017, 9, 229-234.                                                                          | 9.5  | 31        |
| 54 | First-principles study of pressure-induced metal-insulator transition in BiNiO3. Applied Physics<br>Letters, 2007, 91, 101901.                                                                                                              | 1.5  | 29        |

| #  | Article                                                                                                                                                                                                                | IF                | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 55 | Surface energy and shrinkage of a nanocavity. Applied Physics Letters, 2006, 89, 183104.                                                                                                                               | 1.5               | 28           |
| 56 | Charge-controlled switchable H2 storage on conductive borophene nanosheet. International Journal of Hydrogen Energy, 2019, 44, 20150-20157.                                                                            | 3.8               | 26           |
| 57 | Hexagonal boron nitride and graphene in-plane heterostructures: An experimentally feasible approach to charge-induced switchable CO 2 capture. Chemical Physics, 2016, 478, 139-144.                                   | 0.9               | 25           |
| 58 | Computational design of two-dimensional nanomaterials for charge modulated CO2/H2 capture and/or storage. Energy Storage Materials, 2017, 8, 169-183.                                                                  | 9.5               | 25           |
| 59 | RhNi nanocatalyst: Spontaneous alloying and high activity for hydrogen generation from hydrous<br>hydrazine. International Journal of Hydrogen Energy, 2016, 41, 6362-6368.                                            | 3.8               | 24           |
| 60 | Charge-modulated permeability and selectivity in graphdiyne for hydrogen purification. Molecular<br>Simulation, 2016, 42, 573-579.                                                                                     | 0.9               | 24           |
| 61 | Defect Engineering in Graphene-Confined Single-Atom Iron Catalysts for Room-Temperature Methane<br>Conversion. Journal of Physical Chemistry C, 2021, 125, 12628-12635.                                                | 1.5               | 22           |
| 62 | Materials design for electrocatalytic carbon capture. APL Materials, 2016, 4, .                                                                                                                                        | 2.2               | 20           |
| 63 | Light, Catalyst, Activation: Boosting Catalytic Oxygen Activation Using a Light Pretreatment Approach.<br>ACS Catalysis, 2017, 7, 3644-3653.                                                                           | 5.5               | 20           |
| 64 | Processable Surface Modification of Nickelâ€Heteroatom (N, S) Bridge Sites for Promoted Alkaline<br>Hydrogen Evolution. Angewandte Chemie, 2018, 131, 471.                                                             | 1.6               | 19           |
| 65 | Dependence of morphology of pulsed-laser deposited coatings on temperature: a kinetic Monte Carlo simulation. Surface and Coatings Technology, 2005, 197, 288-293.                                                     | 2.2               | 18           |
| 66 | First-Principle Framework for Total Charging Energies in Electrocatalytic Materials and<br>Charge-Responsive Molecular Binding at Gas–Surface Interfaces. ACS Applied Materials &<br>Interfaces, 2016, 8, 10897-10903. | 4.0               | 18           |
| 67 | Pulsed-laser deposition of polycrystalline Ni films: A three-dimensional kinetic Monte Carlo simulation. Surface Science, 2005, 588, 175-183.                                                                          | 0.8               | 15           |
| 68 | Ordering Fe nanowire on stepped Cu (111) surface. Applied Physics Letters, 2006, 88, 263116.                                                                                                                           | 1.5               | 14           |
| 69 | Giant Magneto-Optical Kerr Effects in Ferromagnetic Perovskite BiNiO <sub>3</sub> with Half-Metallic<br>State. Journal of Physical Chemistry C, 2008, 112, 16638-16642.                                                | 1.5               | 13           |
| 70 | With the same Clar formulas, do the two-dimensional sandwich nanostructures X–Cr–X (X = C4H,) Tj ETQq                                                                                                                  | 0 0 0 rgBT<br>1.3 | /Oygrlock 10 |
| 71 | Synthesis, optical properties and theoretical modelling of discrete emitting states in doped silicon nanocrystals for bioimaging. Nanoscale, 2018, 10, 15600-15607.                                                    | 2.8               | 13           |

| /1 | nanocrystals for bioimaging. Nanoscale, 2018, 10, 15600-15607.                                                                | 2.0 | 10 |
|----|-------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 72 | Ab initio study of rumpled relaxation and core-level shift of barium titanate surface. Surface Science, 2007, 601, 1345-1350. | 0.8 | 12 |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Nitrogen Doped Carbon Nanosheets Coupled Nickel–Carbon Pyramid Arrays Toward Efficient<br>Evolution of Hydrogen. Advanced Sustainable Systems, 2017, 1, 1700032.                                                                                   | 2.7 | 12        |
| 74 | Unveiling the role of carbon oxidation in irreversible degradation of atomically-dispersed<br>FeN <sub>4</sub> moieties for proton exchange membrane fuel cells. Journal of Materials Chemistry A,<br>2021, 9, 8721-8729.                          | 5.2 | 11        |
| 75 | In Operando Selfâ€Healing of Perovskite Electrocatalysts: A Case Study of SrCoO <sub>3</sub> for the Oxygen Evolution Reaction. Particle and Particle Systems Characterization, 2017, 34, 1600280.                                                 | 1.2 | 10        |
| 76 | Theory-guided construction of electron-deficient sites via removal of lattice oxygen for the boosted electrocatalytic synthesis of ammonia. Nano Research, 2021, 14, 1457-1464.                                                                    | 5.8 | 10        |
| 77 | Templateâ€Directed Rapid Synthesis of Pdâ€Based Ultrathin Porous Intermetallic Nanosheets for Efficient<br>Oxygen Reduction. Angewandte Chemie, 2021, 133, 11037-11044.                                                                            | 1.6 | 9         |
| 78 | Sulfurâ€Dopantâ€Promoted Electroreduction of CO 2 over Coordinatively Unsaturated Niâ€N 2 Moieties.<br>Angewandte Chemie, 0, , .                                                                                                                   | 1.6 | 9         |
| 79 | New insights on the substantially reduced bandgap of bismuth layered perovskite oxide thin films.<br>Journal of Materials Chemistry C, 2021, 9, 3161-3170.                                                                                         | 2.7 | 9         |
| 80 | Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy fficient<br>CO <sub>2</sub> Electroreduction. Angewandte Chemie, 2022, 134, .                                                                             | 1.6 | 9         |
| 81 | First-principles study for the atomic structures and electronic properties of PbTiO3 oxygen-vacancies (001) surface. Surface Science, 2007, 601, 5412-5418.                                                                                        | 0.8 | 8         |
| 82 | Charge-modulated CO2 capture. Current Opinion in Electrochemistry, 2017, 4, 118-123.                                                                                                                                                               | 2.5 | 8         |
| 83 | Oxygen Electrocatalysis at Mn <sup>III</sup> –O <i><sub>x</sub></i> –C Hybrid Heterojunction: An<br>Electronic Synergy or Cooperative Catalysis?. ACS Applied Materials & Interfaces, 2019, 11, 706-713.                                           | 4.0 | 7         |
| 84 | Facile CO Oxidation on Oxygenâ€functionalized MXenes via the Marsâ€van Krevelen Mechanism.<br>ChemCatChem, 2020, 12, 1007-1012.                                                                                                                    | 1.8 | 7         |
| 85 | Vanadium Oxide Clusters Decorated Metallic Cobalt Catalyst for Active Alkaline Hydrogen Evolution.<br>Cell Reports Physical Science, 2020, 1, 100275.                                                                                              | 2.8 | 7         |
| 86 | Regioselective Oxidation of Strained Graphene for Controllable Synthesis of Nanoribbons. Journal of<br>Physical Chemistry C, 2013, 117, 19160-19166.                                                                                               | 1.5 | 6         |
| 87 | Unraveling the Factors Behind the Efficiency of Hydrogen Evolution in Endohedrally Doped<br>C <sub>60</sub> Structures via Ab Initio Calculations and Insights from Machine Learning Models.<br>Advanced Theory and Simulations, 2019, 2, 1800202. | 1.3 | 6         |
| 88 | Huge Lithium Storage in 2D Bilayer Structures with Point Defects. Journal of Physical Chemistry C, 2021, 125, 23597-23603.                                                                                                                         | 1.5 | 6         |
| 89 | Catalytic Bond-Breaking Selectivity in the Ethylene Decomposition on Ni Surfaces:  Kinetic Monte Carlo<br>Simulations. Journal of Physical Chemistry C, 2008, 112, 4219-4225.                                                                      | 1.5 | 5         |
| 90 | Enhanced stability and stacking dependent magnetic/electronic properties of 2D monolayer<br>FeTiO <sub>3</sub> on a Ti <sub>2</sub> CO <sub>2</sub> substrate. Journal of Materials Chemistry C,<br>2019, 7, 15308-15314.                          | 2.7 | 5         |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Roughing titanium quantum wire on patterned monohydride diamond (001) surface. Journal of<br>Chemical Physics, 2007, 126, 184705.                                                                                                    | 1.2 | 4         |
| 92  | Supramolecular Nanowires Self-Assembly on Stepped Ag(110) Surface. Journal of Physical Chemistry C, 2009, 113, 19926-19929.                                                                                                          | 1.5 | 4         |
| 93  | Intrinsic ORR Activity Enhancement of Pt Atomic Sites by Engineering the d â€Band Center via Local<br>Coordination Tuning. Angewandte Chemie, 2021, 133, 22082-22088.                                                                | 1.6 | 4         |
| 94  | Plate model to evaluate interfacial adhesion of anisotropy thin film in CSN test. Journal of Materials Science, 2004, 39, 4013-4016.                                                                                                 | 1.7 | 2         |
| 95  | Temperature-dependent surface alloying in Au/Ni (1 1 0). Journal of Alloys and Compounds, 2009, 467, 428-433.                                                                                                                        | 2.8 | 2         |
| 96  | Molecular dynamics study of temperature-dependent ripples in monolayer and bilayer graphene on<br>6H—SiC surfaces. Chinese Physics B, 2012, 21, 066803.                                                                              | 0.7 | 2         |
| 97  | First-principles calculations of surfactant-assisted growth of polar CaO(111) oxide film: The case of water-based surfactant. Physical Review B, 2012, 86, .                                                                         | 1.1 | 2         |
| 98  | Fermi Level Determination for Charged Systems via Recursive Density of States Integration. Journal of<br>Physical Chemistry Letters, 2018, 9, 4014-4019.                                                                             | 2.1 | 2         |
| 99  | Hydrophilic tannic acid-modified WS <sub>2</sub> nanosheets for enhanced polysulfide conversion in aqueous media. JPhys Energy, 2019, 1, 015005.                                                                                     | 2.3 | 2         |
| 100 | Activating Inert MXenes for Hydrogen Evolution Reaction via Anchored Metal Centers. Advanced Theory and Simulations, 2022, 5, .                                                                                                      | 1.3 | 2         |
| 101 | COMPARISON OF ISLAND FORMATION BETWEEN PULSED LASER DEPOSITION AND MOLECULAR BEAM EPITAXY: A KINETIC MONTE CARLO SIMULATION. Surface Review and Letters, 2005, 12, 611-617.                                                          | 0.5 | 1         |
| 102 | Charge-induced transition between miscible and immiscible in nanometer-sized alloying particles.<br>Chemical Physics Letters, 2006, 423, 143-146.                                                                                    | 1.2 | 1         |
| 103 | Thermodynamic stability of quantum dots on strained substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1755-1758.                                                                                          | 1.3 | 1         |
| 104 | GROWTH MECHANISM OF RING SHAPED NANOSTRUCTURES SELF-ASSEMBLY UPON DROPLET EPITAXY.<br>Surface Review and Letters, 2012, 19, 1250029.                                                                                                 | 0.5 | 1         |
| 105 | Electrocatalysts: In Operando Self-Healing of Perovskite Electrocatalysts: A Case Study of SrCoO3 for the Oxygen Evolution Reaction (Part. Part. Syst. Charact. 4/2017). Particle and Particle Systems Characterization, 2017, 34, . | 1.2 | 1         |
| 106 | Computational Materials Science: Discovering and Accelerating Future Technologies. Advanced Theory and Simulations, 2019, 2, 1900023.                                                                                                | 1.3 | 1         |
| 107 | Photocatalysis: Interfacing BiVO <sub>4</sub> with Reduced Graphene Oxide for Enhanced<br>Photoactivity: A Tale of Facet Dependence of Electron Shuttling (Small 38/2016). Small, 2016, 12,<br>5232-5232.                            | 5.2 | 0         |
|     |                                                                                                                                                                                                                                      |     |           |

108 Hexagonal honeycomb silicon: Silicene. , 2017, , 171-188.

|     |                                                                                                      | TAN |           |
|-----|------------------------------------------------------------------------------------------------------|-----|-----------|
|     |                                                                                                      |     |           |
| #   | Article                                                                                              | lF  | CITATIONS |
| 109 | Hexagonal honeycomb silicon: Silicene. Series in Materials Science and Engineering, 2017, , 171-188. | 0.1 | О         |