Mario dos Reis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2162024/publications.pdf

Version: 2024-02-01

126708 5,724 52 33 citations h-index papers

g-index 57 57 57 7365 docs citations times ranked citing authors all docs

182168

51

#	Article	IF	CITATIONS
1	A Mutation–Selection Model of Protein Evolution under Persistent Positive Selection. Molecular Biology and Evolution, 2022, 39, .	3.5	10
2	A species-level timeline of mammal evolution integrating phylogenomic data. Nature, 2022, 602, 263-267.	13.7	84
3	Dire wolves were the last of an ancient New World canid lineage. Nature, 2021, 591, 87-91.	13.7	43
4	Dietary Diversification and Specialization in Neotropical Bats Facilitated by Early Molecular Evolution. Molecular Biology and Evolution, 2021, 38, 3864-3883.	3.5	24
5	Pedigree-based and phylogenetic methods support surprising patterns of mutation rate and spectrum in the gray mouse lemur. Heredity, 2021, 127, 233-244.	1.2	30
6	Nectar-feeding bats and birds show parallel molecular adaptations in sugar metabolism enzymes. Current Biology, 2021, 31, 4667-4674.e6.	1.8	7
7	Phylogenomic Resolution of the Cetacean Tree of Life Using Target Sequence Capture. Systematic Biology, 2020, 69, 479-501.	2.7	160
8	Molecular Clocks without Rocks: New Solutions for Old Problems. Trends in Genetics, 2020, 36, 845-856.	2.9	32
9	Bayesian Phylogenomic Dating. , 2020, , 221-249.		2
10	Bayesian Molecular Clock Dating Using Genome-Scale Datasets. Methods in Molecular Biology, 2019, 1910, 309-330.	0.4	33
11	Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22657-22663.	3.3	291
12	Rapid morphological evolution in placental mammals post-dates the origin of the crown group. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182418.	1.2	29
13	Bayesian Estimation of Species Divergence Times Using Correlated Quantitative Characters. Systematic Biology, 2019, 68, 967-986.	2.7	27
14	Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. New Phytologist, 2018, 218, 819-834.	3.5	149
15	Using Phylogenomic Data to Explore the Effects of Relaxed Clocks and Calibration Strategies on Divergence Time Estimation: Primates as a Test Case. Systematic Biology, 2018, 67, 594-615.	2.7	143
16	Fossil-free dating. Nature Ecology and Evolution, 2018, 2, 771-772.	3.4	3
17	An Evaluation of Different Partitioning Strategies for Bayesian Estimation of Species Divergence Times. Systematic Biology, 2018, 67, 61-77.	2.7	32
18	Finding Direction in the Search for Selection. Journal of Molecular Evolution, 2017, 84, 39-50.	0.8	15

#	Article	IF	Citations
19	RelTime Rates Collapse to a Strict Clock When Estimating the Timeline of Animal Diversification. Genome Biology and Evolution, 2017, 9, 1320-1328.	1.1	25
20	A biologist's guide to Bayesian phylogenetic analysis. Nature Ecology and Evolution, 2017, 1, 1446-1454.	3.4	154
21	Comparison of different strategies for using fossil calibrations to generate the time prior in Bayesian molecular clock dating. Molecular Phylogenetics and Evolution, 2017, 114, 386-400.	1.2	46
22	Geogenetic patterns in mouse lemurs (genus <i>Microcebus</i>) reveal the ghosts of Madagascar's forests past. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8049-8056.	3.3	81
23	Notes on the birth–death prior with fossil calibrations for Bayesian estimation of species divergence times. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150128.	1.8	16
24	The Interrelationships of Placental Mammals and the Limits of Phylogenetic Inference. Genome Biology and Evolution, 2016, 8, 330-344.	1.1	195
25	Bayesian molecular clock dating of species divergences in the genomics era. Nature Reviews Genetics, 2016, 17, 71-80.	7.7	244
26	The impact of ancestral population size and incomplete lineage sorting on Bayesian estimation of species divergence times. Environmental Epigenetics, 2015, 61, 874-885.	0.9	59
27	Characterization of the Uncertainty of Divergence Time Estimation under Relaxed Molecular Clock Models Using Multiple Loci. Systematic Biology, 2015, 64, 267-280.	2.7	70
28	How to calculate the non-synonymous to synonymous rate ratio of protein-coding genes under the Fisher–Wright mutation–selection framework. Biology Letters, 2015, 11, 20141031.	1.0	39
29	Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales. Current Biology, 2015, 25, 2939-2950.	1.8	370
30	Dating Tips for Divergence-Time Estimation. Trends in Genetics, 2015, 31, 637-650.	2.9	126
31	A Beginners Guide to Estimating the Non-synonymous to Synonymous Rate Ratio of all Protein-Coding Genes in a Genome. Methods in Molecular Biology, 2015, 1201, 65-90.	0.4	105
32	A Penalized-Likelihood Method to Estimate the Distribution of Selection Coefficients from Phylogenetic Data. Genetics, 2014, 197, 257-271.	1.2	55
33	Bayesian Estimation of Nonsynonymous/Synonymous Rate Ratios for Pairwise Sequence Comparisons. Molecular Biology and Evolution, 2014, 31, 1902-1913.	3.5	13
34	Molecular Evolutionary Characterization of a V1R Subfamily Unique to Strepsirrhine Primates. Genome Biology and Evolution, 2014, 6, 213-227.	1.1	71
35	The Impact of the Rate Prior on Bayesian Estimation of Divergence Times with Multiple Loci. Systematic Biology, 2014, 63, 555-565.	2.7	78
36	Neither phylogenomic nor palaeontological data support a Palaeogene origin of placental mammals. Biology Letters, 2014, 10, 20131003.	1.0	87

#	Article	IF	CITATIONS
37	Why Do More Divergent Sequences Produce Smaller Nonsynonymous/Synonymous Rate Ratios in Pairwise Sequence Comparisons?. Genetics, 2013, 195, 195-204.	1.2	44
38	The unbearable uncertainty of Bayesian divergence time estimation. Journal of Systematics and Evolution, 2013, 51, 30-43.	1.6	130
39	Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3491-3500.	1.2	449
40	Estimating the Distribution of Selection Coefficients from Phylogenetic Data Using Sitewise Mutation-Selection Models. Genetics, 2012, 190, 1101-1115.	1.2	114
41	Statistical Properties of the Branch-Site Test of Positive Selection. Molecular Biology and Evolution, 2011, 28, 1217-1228.	3.5	289
42	An exceptionally high nucleotide and haplotype diversity and a signature of positive selection for the eIF4E resistance gene in barley are revealed by allele mining and phylogenetic analyses of natural populations. Molecular Ecology, 2011, 20, no-no.	2.0	48
43	Charting the Host Adaptation of Influenza Viruses. Molecular Biology and Evolution, 2011, 28, 1755-1767.	3.5	28
44	Approximate Likelihood Calculation on a Phylogeny for Bayesian Estimation of Divergence Times. Molecular Biology and Evolution, 2011, 28, 2161-2172.	3 . 5	303
45	Analysis of the Albumin/α-Fetoprotein/Afamin/Group specific component gene family in the context of zebrafish liver differentiation. Gene Expression Patterns, 2010, 10, 237-243.	0.3	58
46	Estimating Translational Selection in Eukaryotic Genomes. Molecular Biology and Evolution, 2009, 26, 451-461.	3.5	87
47	Identifying Changes in Selective Constraints: Host Shifts in Influenza. PLoS Computational Biology, 2009, 5, e1000564.	1.5	106
48	Using Non-Homogeneous Models of Nucleotide Substitution to Identify Host Shift Events: Application to the Origin of the 1918 †Spanish†Influenza Pandemic Virus. Journal of Molecular Evolution, 2009, 69, 333-345.	0.8	36
49	Archaeology and evolution of transfer RNA genes in the Escherichia coli genome. Rna, 2006, 12, 933-942.	1.6	41
50	Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Research, 2004, 32, 5036-5044.	6.5	629
51	Churchill, a Zinc Finger Transcriptional Activator, Regulates the Transition between Gastrulation and Neurulation. Cell, 2003, 115, 603-613.	13.5	182
52	Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome. Nucleic Acids Research, 2003, 31, 6976-6985.	6. 5	219