Guangfei Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2161988/publications.pdf

Version: 2024-02-01

218677 254184 2,006 60 26 43 h-index citations g-index papers 60 60 60 2480 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment ofÂmariculture. Environmental Pollution, 2017, 220, 909-918.	7.5	137
2	Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds. Scientific Reports, 2015, 5, 13515.	3.3	110
3	Fishmeal Application Induces Antibiotic Resistance Gene Propagation in Mariculture Sediment. Environmental Science & Technology, 2017, 51, 10850-10860.	10.0	100
4	Azo dye decolorization by Shewanella aquimarina under saline conditions. Bioresource Technology, 2012, 114, 95-101.	9.6	83
5	PAHs accelerate the propagation of antibiotic resistance genes in coastal water microbial community. Environmental Pollution, 2017, 231, 1145-1152.	7.5	80
6	Acceleration of goethite-catalyzed Fenton-like oxidation of ofloxacin by biochar. Journal of Hazardous Materials, 2020, 397, 122783.	12.4	71
7	Effects of redox mediators on azo dye decolorization by Shewanella algae under saline conditions. Bioresource Technology, 2014, 151, 63-68.	9.6	68
8	Enhanced chromate reduction by resting Escherichia coli cells in the presence of quinone redox mediators. Bioresource Technology, 2010, 101, 8127-8131.	9.6	59
9	Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol. Environmental Science and Pollution Research, 2017, 24, 5249-5258.	5.3	59
10	The <i>Escherichia coli</i> Azoreductase AzoR Is Involved in Resistance to Thiol-Specific Stress Caused by Electrophilic Quinones. Journal of Bacteriology, 2009, 191, 6394-6400.	2.2	57
11	Biogenic Fenton-like Reaction Involvement in Cometabolic Degradation of Tetrabromobisphenol A by <i>Pseudomonas</i> sp. fz. Environmental Science & En	10.0	54
12	Goethite-humic acid coprecipitate mediated Fenton-like degradation of sulfanilamide: The role of coprecipitated humic acid in accelerating Fe(III)/Fe(II) cycle and degradation efficiency. Journal of Hazardous Materials, 2021, 403, 124026.	12.4	52
13	Extracellular degradation of tetrabromobisphenol A via biogenic reactive oxygen species by a marine Pseudoalteromonas sp Water Research, 2018, 142, 354-362.	11.3	51
14	Acceleration of azo dye decolorization by using quinone reductase activity of azoreductase and quinone redox mediator. Bioresource Technology, 2009, 100, 2791-2795.	9.6	50
15	Enhanced biotransformation of nitrobenzene by the synergies of Shewanella species and mediator-functionalized polyurethane foam. Journal of Hazardous Materials, 2013, 252-253, 227-232.	12.4	48
16	Decolorization of azo dyes by marine Shewanella strains under saline conditions. Applied Microbiology and Biotechnology, 2013, 97, 4187-4197.	3.6	46
17	CO ₂ Fixation, Lipid Production, and Power Generation by a Novel Air-Lift-Type Microbial Carbon Capture Cell System. Environmental Science &	10.0	45
18	Selection of microalgae for high CO 2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater. Journal of Environmental Sciences, 2016, 46, 83-91.	6.1	44

#	Article	IF	CITATIONS
19	Simultaneous removal of chromate and nitrate in a packed-bed bioreactor using biodegradable meal box as carbon source and biofilm carriers. Bioresource Technology, 2016, 207, 308-314.	9.6	43
20	Decolorization of azo dyes by Shewanella oneidensis MR-1 in the presence of humic acids. Applied Microbiology and Biotechnology, 2011, 91, 417-424.	3.6	40
21	Bioreduction of Cr(VI) by <i>Acinetobacter</i> sp. WB-1 during simultaneous nitrification/denitrification process. Journal of Chemical Technology and Biotechnology, 2017, 92, 649-656.	3.2	40
22	Enhanced nitrobenzene biotransformation by grapheneâ€anaerobic sludge composite. Journal of Chemical Technology and Biotechnology, 2014, 89, 750-755.	3.2	39
23	Transformation of silver ions to silver nanoparticles mediated by humic acid under dark conditions at ambient temperature. Journal of Hazardous Materials, 2020, 383, 121190.	12.4	36
24	Characterization of Product and Potential Mechanism of Cr(VI) Reduction by Anaerobic Activated Sludge in a Sequencing Batch Reactor. Scientific Reports, 2017, 7, 1681.	3.3	34
25	Interaction between hexavalent chromium and biologically formed iron mineral-biochar composites: Kinetics, products and mechanisms. Journal of Hazardous Materials, 2021, 405, 124246.	12.4	30
26	Combined impact of fishmeal and tetracycline on resistomes in mariculture sediment. Environmental Pollution, 2018, 242, 1711-1719.	7.5	27
27	Biogenic gold nanoparticles-reduced graphene oxide nanohybrid: synthesis, characterization and application in chemical and biological reduction of nitroaromatics. RSC Advances, 2015, 5, 97798-97806.	3.6	26
28	Improved bioreduction of nitrobenzene by black carbon/biochar derived from crop residues. RSC Advances, 2016, 6, 84388-84396.	3.6	26
29	Effects of hexavalent chromium on performance, extracellular polymeric substances and microbial community structure of anaerobic activated sludge in a sequencing batch reactor. Journal of Chemical Technology and Biotechnology, 2017, 92, 2719-2730.	3.2	26
30	Cotransport of biochar and Shewanella oneidensis MR-1 in saturated porous media: Impacts of electrostatic interaction, extracellular electron transfer and microbial taxis. Science of the Total Environment, 2019, 658, 95-104.	8.0	25
31	Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids. Scientific Reports, 2017, 7, 45354.	3.3	24
32	Quinone-mediated microbial synthesis of reduced graphene oxide with peroxidase-like activity. Bioresource Technology, 2013, 149, 503-508.	9.6	23
33	Microbial preparation of magnetite/reduced graphene oxide nanocomposites for the removal of organic dyes from aqueous solutions. RSC Advances, 2015, 5, 95857-95865.	3.6	23
34	Synergistic catalytic Fenton-like degradation of sulfanilamide by biosynthesized goethite-reduced graphene oxide composite. Journal of Hazardous Materials, 2021, 415, 125704.	12.4	23
35	Removal of nitric oxide from simulated flue gas via denitrification in a hollow-fiber membrane bioreactor. Journal of Environmental Sciences, 2013, 25, 2239-2246.	6.1	22
36	Simultaneous bisphenol F degradation, heterotrophic nitrification and aerobic denitrification by a bacterial consortium. Journal of Chemical Technology and Biotechnology, 2017, 92, 854-860.	3.2	22

#	Article	IF	CITATIONS
37	Catalytic performance of quinone and graphene-modified polyurethane foam on the decolorization of azo dye Acid Red 18 by Shewanella sp. RQs-106. Journal of Hazardous Materials, 2018, 356, 82-90.	12.4	22
38	Humic acids promote hydroxyl radical production during transformation of biogenic and abiogenic goethite under redox fluctuation. Chemical Engineering Journal, 2021, 424, 130359.	12.7	22
39	Decolorization of azo dyes by Geobacter metallireducens. Applied Microbiology and Biotechnology, 2013, 97, 7935-7942.	3.6	21
40	Activation of peroxydisulfate by biogenic nanocomposites of reduced graphene oxide and goethite for non-radical selective oxidation of organic contaminants: Production of singlet oxygen and direct electron transfer. Chemical Engineering Journal, 2022, 430, 133177.	12.7	21
41	Enhanced bioreduction of nitrobenzene by reduced graphene oxide materials: effects of surface modification and coexisting soluble electron shuttles. Environmental Science and Pollution Research, 2017, 24, 26874-26880.	5.3	19
42	Energy Taxis toward Redox-Active Surfaces Decreases the Transport of Electroactive Bacteria in Saturated Porous Media. Environmental Science & Eamp; Technology, 2021, 55, 5559-5568.	10.0	16
43	Effects of reduction products of ortho-hydroxyl substituted azo dyes on biodecolorization of azo dyes. Journal of Hazardous Materials, 2009, 171, 222-229.	12.4	15
44	Microbial reduction of Ferrihydrite in the presence of reduced Graphene oxide materials: Alteration of Fe(III) reduction rate, biomineralization product and settling behavior. Chemical Geology, 2018, 476, 272-279.	3.3	15
45	Influence of chromate adsorption and reduction on transport and retention of biochar colloids in saturated porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124791.	4.7	12
46	Effects of reduced graphene oxide on humic acid-mediated transformation and environmental risks of silver ions. Journal of Hazardous Materials, 2020, 385, 121597.	12.4	11
47	Detecting antibiotic resistance genes and human potential pathogenic Bacteria in fishmeal by culture-independent method. Environmental Science and Pollution Research, 2019, 26, 8665-8674.	5.3	10
48	Accelerating effects of humin on sulfide-mediated azo dye reduction. Ecotoxicology and Environmental Safety, 2019, 175, 102-109.	6.0	10
49	Degradation of 1-amino-4-bromoanthraquinone-2-sulfonic acid using combined airlift bioreactor and TiO2-photocatalytic ozonation. Journal of Chemical Technology and Biotechnology, 2013, 88, 970-974.	3.2	9
50	Accelerated removal of Sudan dye by Shewanella oneidensis MR-1 in the presence of quinones and humic acids. World Journal of Microbiology and Biotechnology, 2013, 29, 1723-1730.	3.6	8
51	Effect on sludge disintegration by EDTAâ€enhanced thermalâ€alkaline treatment. Water Environment Research, 2020, 92, 42-50.	2.7	8
52	Facilitated Fe(II) Oxidation but Inhibited Denitrification by Reduced Graphene Oxide during Nitrate-Dependent Fe(II) Oxidation. ACS Earth and Space Chemistry, 2019, 3, 1594-1602.	2.7	7
53	Roles of molecular weight-fractionated extracellular polymeric substance in transformation of Au(III) to Au nanoparticles in aqueous environments. Science of the Total Environment, 2020, 728, 138889.	8.0	7
54	Improving waste activated sludge dewaterability with sodium periodate preâ€oxidation on extracellular polymeric substances. Water Environment Research, 2021, 93, 1680-1689.	2.7	7

#	Article	IF	CITATIONS
55	Redox activity of lignite and its accelerating effects on the chemical reduction of azo dye by sulfide. RSC Advances, 2016, 6, 66930-66937.	3.6	6
56	Effects of sludge lysate for Cr(VI) bioreduction and analysis of bioaugmentation mechanism of sludge humic acid. Environmental Science and Pollution Research, 2019, 26, 5065-5075.	5.3	6
57	Facilitated bioreduction of nitrobenzene by lignite acting as low-cost and efficient electron shuttle. Chemosphere, 2020, 248, 125978.	8.2	6
58	Extracellular electron transfer influences the transport and retention of ferrihydrite nanoparticles in quartz sand coated with Shewanella oneidensis biofilm. Journal of Hazardous Materials, 2021, 417, 126023.	12.4	3
59	Reductive transformation of p-nitrotoluene by a new iron-fly ash packing. Journal of Environmental Sciences, 2015, 37, 31-36.	6.1	2
60	Microbial community dynamics in hybrid biological reactor treating petrochemical wastewater. Desalination and Water Treatment, 0, , 1-9.	1.0	0