Owen M Woodward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2161940/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nature Genetics, 2013, 45, 145-154.	9.4	675
2	Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10338-10342.	3.3	562
3	Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nature Genetics, 2019, 51, 1459-1474.	9.4	251
4	Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier. Journal of Controlled Release, 2014, 178, 8-17.	4.8	160
5	Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Human Molecular Genetics, 2011, 20, 4056-4068.	1.4	101
6	Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5223-5228.	3.3	93
7	The ABCG2 Q141K hyperuricemia and gout associated variant illuminates the physiology of human urate excretion. Nature Communications, 2020, 11, 2767.	5.8	71
8	Epac1 mediates protein kinase A–independent mechanism of forskolin-activated intestinal chloride secretion. Journal of General Physiology, 2010, 135, 43-58.	0.9	69
9	Identification of a Polycystin-1 Cleavage Product, P100, That Regulates Store Operated Ca2+ Entry through Interactions with STIM1. PLoS ONE, 2010, 5, e12305.	1.1	64
10	ABCG transporters and disease. FEBS Journal, 2011, 278, 3215-3225.	2.2	59
11	Polycystin-1 Interacts with Inositol 1,4,5-Trisphosphate Receptor to Modulate Intracellular Ca2+ Signaling with Implications for Polycystic Kidney Disease. Journal of Biological Chemistry, 2009, 284, 36431-36441.	1.6	49
12	Sex Differences in Urate Handling. International Journal of Molecular Sciences, 2020, 21, 4269.	1.8	45
13	Large-scale whole-exome sequencing association studies identify rare functional variants influencing serum urate levels. Nature Communications, 2018, 9, 4228.	5.8	43
14	ABCG2: the molecular mechanisms of urate secretion and gout. American Journal of Physiology - Renal Physiology, 2015, 309, F485-F488.	1.3	35
15	Kidney epithelial cells are active mechano-biological fluid pumps. Nature Communications, 2022, 13, 2317.	5.8	23
16	Effect of body mass index on serum urate and renal uric acid handling responses to an oral inosine load: experimental intervention study in healthy volunteers. Arthritis Research and Therapy, 2020, 22, 259.	1.6	11
17	Urate transport in health and disease. Best Practice and Research in Clinical Rheumatology, 2021, 35, 101717.	1.4	11
18	Three-dimensional in vitro models answer the right questions in ADPKD cystogenesis. American Journal of Physiology - Renal Physiology, 2018, 315, F332-F335.	1.3	9

Owen M Woodward

#	Article	IF	CITATIONS
19	Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus. Nature Communications, 2021, 12, 7173.	5.8	8
20	GDNF drives rapid tubule morphogenesis in novel 3D in vitro model for ADPKD. Journal of Cell Science, 2020, 133, .	1.2	7
21	Lateâ€onset renal hypertrophy and dysfunction in mice lacking CTRP1. FASEB Journal, 2020, 34, 2657-2676.	0.2	6
22	Intestinal TMEM16A control luminal chloride secretion in a NHERF1 dependent manner. Biochemistry and Biophysics Reports, 2021, 25, 100912.	0.7	4
23	<i>Cucumis sativus</i> extract elicits chloride secretion by stimulation of the intestinal TMEM16A ion channel. Pharmaceutical Biology, 2021, 59, 1006-1013.	1.3	4
24	Doxycycline Changes the Transcriptome Profile of mIMCD3 Renal Epithelial Cells. Frontiers in Physiology, 2021, 12, 771691.	1.3	4
25	Cardiometabolic genomics and pharmacogenomics investigations in Filipino Americans: Steps towards precision health and reducing health disparities. American Heart Journal Plus, 2022, 15, 100136.	0.3	4
26	Molecular Structure of the PKD Protein ComplexÂFinally Solved. American Journal of Kidney Diseases, 2019, 73, 620-623.	2.1	2
27	<i>Slc2a5</i> (GLUT5) upregulation in hyperuricemia drives risk for fructose induced NAFLD. FASEB Journal, 2022, 36, .	0.2	1
28	Role of a non FTR chloride channel in intestinal epithelial chloride secretion. FASEB Journal, 2010, 24, 1014.1.	0.2	0
29	Phenotypic Differences Between Tissues and Sex Observed in Mice with Human Gout Causing ABCG2 Variant. FASEB Journal, 2018, 32, 747.26.	0.2	Ο
30	Gout Causing ABCG2 Mutation Results in Intestinal Net Urate Transport Defect, Hyperuricemia, & Altered Metabolic Phenotype. FASEB Journal, 2019, 33, 575.11-575.11.	0.2	0
31	Ezrin is a novel target in cyst initiation in ADPKD. FASEB Journal, 2019, 33, 747.2.	0.2	Ο
32	Transcription Factor HNF4A Regulates Urate Transporter ABCG2. FASEB Journal, 2019, 33, 575.10.	0.2	0
33	Renal Transcriptional Profiles of Hyperuricemic Mouse Models Reveal Urate Dependent Alternations in Metabolic Pathways, FASER Journal, 2022, 36	0.2	0