Stephen H Devoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2161551/publications.pdf

Version: 2024-02-01

29 papers 2,376 citations

394421 19 h-index 26 g-index

29 all docs

29 docs citations

times ranked

29

1449 citing authors

#	Article	IF	CITATIONS
1	Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell, 1991, 65, 1243-1253.	28.9	407
2	A cyclin A-protein kinase complex possesses sequence-specific DNA binding activity: p33cdk2 is a component of the E2F-cyclin A complex. Cell, 1992, 68, 167-176.	28.9	395
3	Somite development in zebrafish. Developmental Dynamics, 2000, 219, 287-303.	1.8	263
4	Positive and Negative Regulation of Muscle Cell Identity by Members of the hedgehog and TGF- \hat{l}^2 Gene Families. Journal of Cell Biology, 1997, 139, 145-156.	5.2	200
5	Generality of vertebrate developmental patterns: evidence for a dermomyotome in fish. Evolution & Development, 2006, 8, 101-110.	2.0	125
6	Dynamic somite cell rearrangements lead to distinct waves of myotome growth. Development (Cambridge), 2007, 134, 1253-1257.	2.5	112
7	Hedgehog acts directly on the zebrafish dermomyotome to promote myogenic differentiation. Developmental Biology, 2006, 300, 736-746.	2.0	110
8	Distinct mechanisms regulate slow-muscle development. Current Biology, 2001, 11, 1432-1438.	3.9	109
9	Hedgehog signaling is required for commitment but not initial induction of slow muscle precursors. Developmental Biology, 2004, 275, 143-157.	2.0	81
10	Gfapâ€positive radial glial cells are an essential progenitor population for laterâ€born neurons and glia in the zebrafish spinal cord. Glia, 2016, 64, 1170-1189.	4.9	70
11	The development of muscle fiber type identity in zebrafish cranial muscles. Anatomy and Embryology, 2005, 209, 323-334.	1.5	63
12	The teleost dermomyotome. Developmental Dynamics, 2007, 236, 2432-2443.	1.8	62
13	Functional Morphology and Developmental Biology of Zebrafish: Reciprocal Illumination from an Unlikely Couple. Integrative and Comparative Biology, 2002, 42, 222-231.	2.0	61
14	Growth in the larval zebrafish pectoral fin and trunk musculature. Developmental Dynamics, 2008, 237, 307-315.	1.8	53
15	Fss/Tbx6 is required for central dermomyotome cell fate in zebrafish. Biology Open, 2012, 1, 806-814.	1.2	50
16	Tbx6, Mesp-b and Ripply1 regulate the onset of skeletal myogenesis in zebrafish. Development (Cambridge), 2015, 142, 1159-68.	2.5	47
17	Expression of the growth cone specific epitope CDA 1 and the Synaptic vesicle protein SVP38 in the developing mammalian cerebral cortex. Journal of Comparative Neurology, 1989, 290, 154-168.	1.6	40
18	SVP38: A Synaptic Vesicle Protein Whose Appearance Correlates Closely with Synaptogenesis in the Rat Nervous System. Annals of the New York Academy of Sciences, 1987, 493, 493-496.	3.8	38

#	Article	IF	CITATIONS
19	BMP regulation of myogenesis in zebrafish. Developmental Dynamics, 2010, 239, 806-817.	1.8	35
20	Somite development in zebrafish. Developmental Dynamics, 2000, 219, 287-303.	1.8	18
21	Regulatory Network of the Scoliosis-Associated Genes Establishes Rostrocaudal Patterning of Somites in Zebrafish. IScience, 2019, 12, 247-259.	4.1	9
22	Immunocytochemistry to Study Myogenesis in Zebrafish. Methods in Molecular Biology, 2012, 798, 153-169.	0.9	8
23	Cell differentiation and pattern formation in the developing mammalian retina. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1988, 8, S27-S41.	0.0	7
24	Anterior trunk muscle shows mix of axial and appendicular developmental patterns. Developmental Dynamics, 2019, 248, 961-968.	1.8	6
25	Osmotic and Heat Stress Effects on Segmentation. PLoS ONE, 2016, 11, e0168335.	2.5	3
26	Characterizing the diverse cells that associate with the developing commissures of the zebrafish forebrain. Developmental Neurobiology, 2021, 81, 671-695.	3.0	3
27	Somite development in zebrafish. , 0, .		1
28	Growth in the larval zebrafish pectoral fin and trunk musculature. Developmental Dynamics, 2008, 237, spc1-spc1.	1.8	0
29	BMP regulation of myogenesis in zebrafish. Developmental Dynamics, 2010, 239, spcone-spcone.	1.8	o