Yoshihiro Sekine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2161547/publications.pdf

Version: 2024-02-01

54	1,219	430874	395702
papers	citations	h-index	g-index
59	59	59	935
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Enhanced mixed proton and electron conductor at room temperature from chemically modified single-wall carbon nanotubes. RSC Advances, 2022, 12, 8632-8636.	3 . 6	2
2	High water adsorption features of graphene oxide: potential of graphene oxide-based desert plantation. Materials Advances, 2022, 3, 3418-3422.	5.4	4
3	Recrystallization solvent-dependent elastic/plastic flexibility of an <i>n</i> dodecyl-substituted tetrachlorophthalimide. Chemical Communications, 2022, 58, 5411-5414.	4.1	7
4	High Proton Conductivity of 3D Graphene Oxide Intercalated with Aromatic Sulfonic Acids. ChemPlusChem, 2022, 87, e202200003.	2.8	3
5	Insights and Further Understanding of Radioactive Cesium Removal Using Zeolite, Prussian Blue and Graphene Oxide as Adsorbents. Bulletin of the Chemical Society of Japan, 2022, 95, 862-870.	3.2	4
6	Synergistic Strengthening in Graphene Oxide and Oxidized Singleâ€walled Carbon Nanotube Hybrid Material for use as Electrolytes in Proton Exchange Membrane Fuel Cells. Chemistry - an Asian Journal, 2022, 17, .	3.3	2
7	Recent advances in ferroelectric metal complexes. Coordination Chemistry Reviews, 2022, 469, 214663.	18.8	13
8	Magnetism in a helicate complexes arising with the tetradentate ligand. Dalton Transactions, 2021, 50, 494-498.	3. 3	6
9	1D Mn(<scp>iii</scp>) coordination polymers exhibiting chiral symmetry breaking and weak ferromagnetism. Dalton Transactions, 2021, 50, 5428-5432.	3.3	2
10	Hydrogen bond-induced abrupt spin crossover behaviour in 1-D cobalt(<scp>ii</scp>) complexes – the key role of solvate water molecules. Dalton Transactions, 2021, 50, 7843-7853.	3.3	16
11	Encapsulation and controlled release of an antimalarial drug using surface functionalized mesoporous silica nanocarriers. Journal of Materials Chemistry B, 2021, 9, 5043-5046.	5 . 8	4
12	3D porous Ni/NiO _x as a bifunctional oxygen electrocatalyst derived from freeze-dried Ni(OH) ₂ . Nanoscale, 2021, 13, 5530-5535.	5.6	21
13	lonicity Diagrams for Electron-Donor and -Acceptor Metal–Organic Frameworks: DA Chains and D ₂ A Layers Obtained from Paddlewheel-Type Diruthenium(II,II) Complexes and Polycyano-Organic Acceptors. Inorganic Chemistry, 2021, 60, 3046-3056.	4.0	4
14	A plastically bendable and polar organic crystal. CrystEngComm, 2021, 23, 5560-5563.	2.6	8
15	Crystallization of Diamond from Graphene Oxide Nanosheets by a High Temperature and High Pressure Method. ChemistrySelect, 2021, 6, 3399-3402.	1.5	4
16	Magnetic Phase Switching Performance in an Fe-Tetraoxolene-Layered Metal–Organic Framework via Electrochemical Cycling. Inorganic Chemistry, 2021, 60, 9456-9460.	4.0	3
17	High Proton Conductivity from Titanium Oxide Nanosheets and Their Variation Based on Crystal Phase. Bulletin of the Chemical Society of Japan, 2021, 94, 1840-1845.	3.2	8
18	Structural and Magnetic Characterization of Homo- and Heterometallic Trinuclear Ni(II) and Cu(II) Clusters with N ₂ O ₆ Acyclic Polydentate Ligand. Chemistry Letters, 2021, 50, 1945-1948.	1.3	2

#	Article	IF	CITATIONS
19	Enhanced thermoelectric properties exhibited by unreduced freestanding graphene oxide/carbon nanotube membranes. Materials Advances, 2021, 2, 5645-5649.	5.4	10
20	Microwave aided conversion of cellulose to glucose using polyoxometalate as catalyst. RSC Advances, 2021, 11, 34558-34563.	3.6	8
21	Engineering ferromagnetism in Ni(OH) ₂ nanosheets using tunable uniaxial pressure in graphene oxide/reduced graphene oxide. Physical Chemistry Chemical Physics, 2021, 23, 24233-24238.	2.8	3
22	Lethal Interactions of SARS-CoV-2 with Graphene Oxide: Implications for COVID-19 Treatment. ACS Applied Nano Materials, 2021, 4, 11881-11887.	5.0	33
23	A Ferroelectric Metallomesogen Exhibiting Fieldâ€Induced Slow Magnetic Relaxation. Chemistry - A European Journal, 2021, , .	3.3	16
24	Microwave-assisted catalytic conversion of chitin to 5-hydroxymethylfurfural using polyoxometalate as catalyst. RSC Advances, 2021, 12, 406-412.	3.6	9
25	Electrochemical development of magnetic long-range correlations with Tc = 128 K in a tetraoxolene-bridged Fe-based framework. Journal of Magnetism and Magnetic Materials, 2020, 494, 165818.	2.3	10
26	Fine tuning of intra-lattice electron transfers through site doping in tetraoxolene-bridged iron honeycomb layers. Chemical Communications, 2020, 56, 10867-10870.	4.1	6
27	Chameleonic layered metal–organic frameworks with variable charge-ordered states triggered by temperature and guest molecules. Chemical Science, 2020, 11, 3610-3618.	7.4	24
28	Strong electronic influence of equatorial ligands on frontier orbitals in paddlewheel dichromium(<scp>ii</scp> , <scp>ii</scp>) complexes. Dalton Transactions, 2019, 48, 908-914.	3.3	7
29	Intramolecular Electron Transfers in a Series of [Co ₂ Fe ₂] Tetranuclear Complexes. Inorganic Chemistry, 2019, 58, 11912-11919.	4.0	37
30	Solidâ€State Hydrogenâ€Bond Alterations in a [Co ₂ Fe ₂] Complex with Bifunctional Hydrogenâ€Bonding Donors. Chemistry - A European Journal, 2019, 25, 7449-7452.	3.3	20
31	One-Dimensional Chains of Paddlewheel-Type Dichromium(II,II) Tetraacetate Complexes: Study of Electronic Structure Influenced by $\ddot{l}f$ - and $\ddot{l}\in$ -Donation of Axial Linkers. Inorganic Chemistry, 2018, 57, 5371-5379.	4.0	11
32	Thermally Induced Valence Tautomeric Transition in a Twoâ€Dimensional Feâ€Tetraoxolene Honeycomb Network. Angewandte Chemie - International Edition, 2018, 57, 12043-12047.	13.8	45
33	Hammett-law Correlation in the Electron-donation Ability of <i>trans </i> Benzoate-bridged Paddlewheel-type Diruthenium (II,II) Complexes. Chemistry Letters, 2018, 47, 693-696.	1.3	7
34	lonic Donor–Acceptor Chain Derived from an Electronâ€Transfer Reaction of a Paddlewheelâ€Type Diruthenium(II, II) Complex and <i>N</i> , <i>N′</i> êDicyanoquinonediimine. Chemistry - A European Journal, 2018, 24, 13093-13097.	3.3	8
35	Thermally Induced Valence Tautomeric Transition in a Twoâ€Dimensional Feâ€Tetraoxolene Honeycomb Network. Angewandte Chemie, 2018, 130, 12219-12223.	2.0	10
36	Dimensionally Controlled Assembly of an External Stimuliâ€Responsive [Co _{2< sub>Fe_{2< sub>] Complex into Supramolecular Hydrogenâ€Bonded Networks. Chemistry - A European Journal, 2017, 23, 5193-5197.}}	3.3	36

#	Article	IF	CITATIONS
37	Built-in TTF–TCNQ charge-transfer salts in π-stacked pillared layer frameworks. CrystEngComm, 2017, 19, 2300-2304.	2.6	17
38	A Hydrogenâ€Bonded Cyanideâ€Bridged [Co ₂ Fe ₂] Square Complex Exhibiting a Threeâ€Step Spin Transition. Angewandte Chemie - International Edition, 2017, 56, 591-594.	13.8	82
39	A Hydrogenâ€Bonded Cyanideâ€Bridged [Co ₂ Fe ₂] Square Complex Exhibiting a Threeâ€Step Spin Transition. Angewandte Chemie, 2017, 129, 606-609.	2.0	24
40	Magnetic Phase Switching in a Tetraoxolene-Bridged Honeycomb Ferrimagnet Using a Lithium Ion Battery System. Chemistry of Materials, 2017, 29, 10053-10059.	6.7	31
41	Rù⁄4cktitelbild: A Hydrogenâ€Bonded Cyanideâ€Bridged [Co ₂ Fe ₂] Square Complex Exhibiting a Threeâ€Step Spin Transition (Angew. Chem. 2/2017). Angewandte Chemie, 2017, 129, 672-672.	2.0	1
42	trans-Heteroleptic carboxylate-bridged paddlewheel diruthenium(<scp>ii</scp> , <scp>ii</scp>) complexes with 2,6-bis(trifluoromethyl)benzoate ligands. Dalton Transactions, 2016, 45, 7427-7434.	3.3	11
43	Stepwise fabrication of donor/acceptor thin films with a charge-transfer molecular wire motif. Chemical Communications, 2016, 52, 13983-13986.	4.1	11
44	X-ray-induced phase transitions by selective excitation of heterometal ions in a cyanide-bridged Fe–Co molecular square. Chemical Communications, 2014, 50, 4050-4052.	4.1	31
45	Investigation of the light-induced electron-transfer-coupled spin transition in a cyanide-bridged [Co ₂ Fe ₂] complex by X-ray diffraction and absorption measurements. Inorganic Chemistry Frontiers, 2014, 1, 540-543.	6.0	26
46	Cyanide-Bridged Decanuclear Cobalt–Iron Cage. Inorganic Chemistry, 2014, 53, 5899-5901.	4.0	34
47	Abrupt Phase Transition Based on Electron-transfer-coupled Spin Transition in a Cyanide-bridged [Co2Fe2] Tetranuclear Complex. Chemistry Letters, 2014, 43, 1029-1030.	1.3	20
48	Rýcktitelbild: A Light-Induced Phase Exhibiting Slow Magnetic Relaxation in a Cyanide-Bridged [Fe4Co2] Complex (Angew. Chem. 26/2012). Angewandte Chemie, 2012, 124, 6640-6640.	2.0	0
49	A Lightâ€Induced Phase Exhibiting Slow Magnetic Relaxation in a Cyanideâ€Bridged [Fe ₄ Co ₂] Complex. Angewandte Chemie - International Edition, 2012, 51, 6361-6364.	13.8	134
50	Back Cover: A Light-Induced Phase Exhibiting Slow Magnetic Relaxation in a Cyanide-Bridged [Fe4Co2] Complex (Angew. Chem. Int. Ed. 26/2012). Angewandte Chemie - International Edition, 2012, 51, 6536-6536.	13.8	0
51	Controlled Intramolecular Electron Transfers in Cyanide-Bridged Molecular Squares by Chemical Modifications and External Stimuli. Journal of the American Chemical Society, 2011, 133, 3592-3600.	13.7	215
52	Thermally Two-stepped Spin Transitions Induced by Intramolecular Electron Transfers in a Cyanide-bridged Molecular Square. Chemistry Letters, 2010, 39, 978-979.	1.3	57
53	Achiral single molecule magnet and chiral single chain magnet. Chemical Communications, 2010, 46, 6117.	4.1	76
54	Modulation of the elasticity of single crystal, 1-D metal dimethylgly oximato complexes via solid solution effect. CrystEngComm, 0, , .	2.6	6