
Tamer Elsakhawy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2161187/publications.pdf Version: 2024-02-01

TAMED FISAKHANAY

#	Article	IF	CITATIONS
1	Formation of environmentally persistent free radicals from photodegradation of triclosan by metal oxides/silica suspensions and particles. Chemosphere, 2022, 290, 133322.	8.2	16
2	Optimizing the In-Vessel Composting Process of Sugarbeet Dry-Cleaning Residue. Agriculture (Switzerland), 2022, 12, 427.	3.1	2
3	Plant Nutrition for Human Health: A Pictorial Review on Plant Bioactive Compounds for Sustainable Agriculture. Sustainability, 2022, 14, 8329.	3.2	20
4	Developing Liquid Rhizobium Inoculants with Enhanced Long-Term Survival, Storage Stability, and Plant Growth Promotion Using Ectoine Additive. Current Microbiology, 2021, 78, 282-291.	2.2	7
5	Subsequent improvement of lactic acid production from beet molasses by Enterococcus hirae ds10 using different fermentation strategies. Bioresource Technology Reports, 2021, 13, 100617.	2.7	7
6	Efficient Co-Utilization of Biomass-Derived Mixed Sugars for Lactic Acid Production by Bacillus coagulans Azu-10. Fermentation, 2021, 7, 28.	3.0	13
7	Soils, Biofortification, and Human Health Under COVID-19: Challenges and Opportunities. Frontiers in Soil Science, 2021, 1, .	2.2	1
8	Nano-biofortification of different crops to immune against COVID-19: A review. Ecotoxicology and Environmental Safety, 2021, 222, 112500.	6.0	26
9	Efficacy of Mushroom Metabolites (Pleurotus ostreatus) as A Natural Product for the Suppression of Broomrape Growth (Orobanche crenata Forsk) in Faba Bean Plants. Plants, 2020, 9, 1265.	3.5	8
10	Selenium and Nano-Selenium Biofortification for Human Health: Opportunities and Challenges. Soil Systems, 2020, 4, 57.	2.6	50
11	One-factor-at-a-time and response surface statistical designs for improved lactic acid production from beet molasses by Enterococcus hirae ds10. SN Applied Sciences, 2020, 2, 1.	2.9	30
12	Soil Health and Its Biology. World Soils Book Series, 2019, , 175-185.	0.2	3
13	Soils and Humans. World Soils Book Series, 2019, , 201-213.	0.2	2
14	Biological Aspects of Selenium and Silicon Nanoparticles in the Terrestrial Environments. , 2018, , 235-264.		12
15	Nanoparticle-Associated Phytotoxicity and Abiotic Stress Under Agroecosystems. , 2018, , 241-268.		7
16	Plant Nutrients and Their Roles Under Saline Soil Conditions. , 2018, , 297-324.		16
17	The Rhizosphere and Plant Nutrition Under Climate Change. , 2017, , 275-308.		17
18	Environmental Nanoremediation under Changing Climate. Environment Biodiversity and Soil Security, 2017, 1, 190-200.	0.4	7