Marco Tschapka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2160699/publications.pdf

Version: 2024-02-01

118 5,512 33 papers citations h-index

120 120 120 8204 all docs docs citations times ranked citing authors

69

g-index

#	Article	IF	CITATIONS
1	Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters, 2015, 18, 834-843.	6.4	578
2	Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 2016, 536, 456-459.	27.8	526
3	Land-use intensification causes multitrophic homogenization of grassland communities. Nature, 2016, 540, 266-269.	27.8	404
4	Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 2019, 568, 88-92.	27.8	313
5	Human Betacoronavirus 2c EMC/2012–related Viruses in Bats, Ghana and Europe. Emerging Infectious Diseases, 2013, 19, 456-459.	4.3	303
6	Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications, 2016, 7, 13736.	12.8	229
7	Evidence for an Ancestral Association of Human Coronavirus 229E with Bats. Journal of Virology, 2015, 89, 11858-11870.	3.4	204
8	The impact of evenâ€aged and unevenâ€aged forest management on regional biodiversity of multiple taxa in European beech forests. Journal of Applied Ecology, 2018, 55, 267-278.	4.0	188
9	Multiple forest attributes underpin the supply of multiple ecosystem services. Nature Communications, 2018, 9, 4839.	12.8	182
10	Bats carry pathogenic hepadnaviruses antigenically related to hepatitis B virus and capable of infecting human hepatocytes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16151-16156.	7.1	154
11	Land use imperils plant and animal community stability through changes in asynchrony rather than diversity. Nature Communications, 2016, 7, 10697.	12.8	125
12	Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150269.	4.0	117
13	Energy density patterns of nectar resources permit coexistence within a guild of Neotropical flower-visiting bats. Journal of Zoology, 2004, 263, 7-21.	1.7	94
14	Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecology Letters, 2019, 22, 170-180.	6.4	92
15	Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications, 2021, 12, 3918.	12.8	81
16	Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology, 2015, 96, 1492-1501.	3.2	75
17	The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas. PLoS ONE, 2015, 10, e0134443.	2.5	67
18	Chiropterophily: On bat-flowers and flower-bats. Curtis's Botanical Magazine, 2002, 19, 114-125.	0.3	64

#	Article	IF	Citations
19	Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nature Communications, 2018, 9, 3177.	12.8	63
20	Insights into the assembly rules of a continent-wide multilayer network. Nature Ecology and Evolution, 2019, 3, 1525-1532.	7.8	52
21	The role of echolocation strategies for niche differentiation in bats. Canadian Journal of Zoology, 2018, 96, 171-181.	1.0	51
22	Highly diversified coronaviruses in neotropical bats. Journal of General Virology, 2013, 94, 1984-1994.	2.9	50
23	Finding flowers in the dark: nectar-feeding bats integrate olfaction and echolocation while foraging for nectar. Royal Society Open Science, 2016, 3, 160199.	2.4	47
24	Human–Bat Interactions in Rural West Africa. Emerging Infectious Diseases, 2015, 21, 1418-1421.	4.3	45
25	Frugivorous Bats Maintain Functional Habitat Connectivity in Agricultural Landscapes but Rely Strongly on Natural Forest Fragments. PLoS ONE, 2015, 10, e0120535.	2.5	45
26	Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. Journal of Applied Ecology, 2019, 56, 168-179.	4.0	42
27	The effect of local land use and loss of forests on bats and nocturnal insects. Ecology and Evolution, 2016, 6, 4289-4297.	1.9	41
28	Follow me: foraging distances of Leptonycteris yerbabuenae (Chiroptera: Phyllostomidae) in Sonora determined by fluorescent powder. Journal of Mammalogy, 2018, 99, 306-311.	1.3	41
29	Life in a mosaic landscape: anthropogenic habitat fragmentation affects genetic population structure in a frugivorous bat species. Conservation Genetics, 2013, 14, 925-934.	1.5	39
30	Serological Evidence of Influenza A Viruses in Frugivorous Bats from Africa. PLoS ONE, 2015, 10, e0127035.	2.5	39
31	High Local Diversity of Trypanosoma in a Common Bat Species, and Implications for the Biogeography and Taxonomy of the T. cruzi Clade. PLoS ONE, 2014, 9, e108603.	2.5	38
32	Astrovirus infections induce age-dependent dysbiosis in gut microbiomes of bats. ISME Journal, 2018, 12, 2883-2893.	9.8	38
33	Threats from overhunting to the flying fox, Pteropus tonganus, (Chiroptera: Pteropodidae) on Niue Island, South Pacific Ocean. Biological Conservation, 2002, 103, 343-348.	4.1	35
34	Selective Eavesdropping Behaviour in Three Neotropical Bat Species. Ethology, 2013, 119, 66-76.	1.1	35
35	Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nature Ecology and Evolution, 2021, 5, 1582-1593.	7.8	35
36	Pollination of the understorey palm Calyptrogyne ghiesbreghtiana by hovering and perching bats. Biological Journal of the Linnean Society, 2003, 80, 281-288.	1.6	33

3

#	Article	IF	CITATIONS
37	Phenology, nectar production and visitation behaviour of bats on the flowers of the bromeliad <i>>Werauhia gladioliflora</i> in a Costa Rican lowland rain forest. Journal of Tropical Ecology, 2007, 23, 385-395.	1.1	33
38	Nectar uptake in bats using a pumping-tongue mechanism. Science Advances, 2015, 1, e1500525.	10.3	29
39	Habitat use in an assemblage of Central American wandering spiders. Journal of Arachnology, 2013, 41, 151-159.	0.5	27
40	Balancing the Energy Budget in Free-Ranging Male <i>Myotis daubentonii</i> Bats. Physiological and Biochemical Zoology, 2013, 86, 361-369.	1.5	27
41	Diet and Cranial Morphology of <i>Musonycteris harrisoni </i> , a Highly Specialized Nectar-Feeding Bat in Western Mexico. Journal of Mammalogy, 2008, 89, 924-932.	1.3	26
42	Bats Actively Use Leaves as Specular Reflectors to Detect Acoustically Camouflaged Prey. Current Biology, 2019, 29, 2731-2736.e3.	3.9	26
43	Seasonal changes in species composition, resource use and reproductive patterns within a guild of nectar-feeding bats in a west Mexican dry forest. Journal of Tropical Ecology, 2011, 27, 133-145.	1.1	25
44	Morphological specialization influences nectar extraction efficiency of sympatric nectar-feeding bats. Journal of Experimental Biology, 2012, 215, 3989-96.	1.7	25
45	Picky hitchâ€hikers: vector choice leads to directed dispersal and fatâ€tailed kernels in a passively dispersing mite. Oikos, 2013, 122, 1254-1264.	2.7	24
46	Bat Airway Epithelial Cells: A Novel Tool for the Study of Zoonotic Viruses. PLoS ONE, 2014, 9, e84679.	2.5	24
47	Forests of opportunities and mischief: disentangling the interactions between forests, parasites and immune responses. International Journal for Parasitology, 2016, 46, 571-579.	3.1	23
48	Reproduction of the Bat Glossophaga commissarisi (Phyllostomidae: Glossophaginae) in the Costa Rican Rain Forest During Frugivorous and Nectarivorous Periods 1. Biotropica, 2005, 37, 409-415.	1.6	22
49	Impacts of oil palm agriculture on phyllostomid bat assemblages. Biodiversity and Conservation, 2015, 24, 3583-3599.	2.6	22
50	Resisting habitat fragmentation: High genetic connectivity among populations of the frugivorous bat Carollia castanea in an agricultural landscape. Agriculture, Ecosystems and Environment, 2014, 185, 9-15.	5.3	21
51	Associations of Forest Type, Parasitism and Body Condition of Two European Passerines, Fringilla coelebs and Sylvia atricapilla. PLoS ONE, 2013, 8, e81395.	2.5	20
52	Flower Mites of Calyptrogyne ghiesbreghtiana (Arecaceae): Evidence for Dispersal Using Pollinating Bats1. Biotropica, 2004, 36, 377-381.	1.6	19
53	Bat visits to Marcgravia pittieri and notes on the inflorescence diversity within the genus Marcgravia (Marcgraviaceae). Flora: Morphology, Distribution, Functional Ecology of Plants, 2006, 201, 383-388.	1.2	19
54	Morphology reflects microhabitat preferences in an assemblage of neotropical wandering spiders. Zoomorphology, 2015, 134, 219-236.	0.8	19

#	Article	IF	Citations
55	Divergent response to forest structure of two mobile vertebrate groups. Forest Ecology and Management, 2018, 415-416, 129-138.	3.2	19
56	Leg structure explains host site preference in bat flies (Diptera: Streblidae) parasitizing neotropical bats (Chiroptera: Phyllostomidae). Parasitology, 2018, 145, 1475-1482.	1.5	19
57	Consequences of fragmentation for Neotropical bats: The importance of the matrix. Biological Conservation, 2020, 252, 108792.	4.1	19
58	Vertical stratification of seedâ€dispersing vertebrate communities and their interactions with plants in tropical forests. Biological Reviews, 2021, 96, 454-469.	10.4	19
59	Mercury concentrations in bats (Chiroptera) from a gold mining area in the Peruvian Amazon. Ecotoxicology, 2018, 27, 45-54.	2.4	18
60	Biosonar resolving power: echo-acoustic perception of surface structures in the submillimeter range. Frontiers in Physiology, 2014, 5, 64.	2.8	17
61	Guild Structure and Niche Differentiation in Echolocating Bats. Springer Handbook of Auditory Research, 2016, , 141-166.	0.7	17
62	Learning where to feed: the use of social information in flower-visiting Pallas' long-tongued bats (Glossophaga soricina). Animal Cognition, 2016, 19, 251-262.	1.8	17
63	How Nectar-Feeding Bats Localize their Food: Echolocation Behavior of Leptonycteris yerbabuenae Approaching Cactus Flowers. PLoS ONE, 2016, 11, e0163492.	2.5	17
64	Desiccation resistance reflects patterns of microhabitat choice in a Central-American assemblage of wandering spiders. Journal of Experimental Biology, 2014, 217, 2789-95.	1.7	16
65	Bats are Not Birds – Different Responses to Human Landâ€use on a Tropical Mountain. Biotropica, 2015, 47, 497-508.	1.6	16
66	Interaction between MHC diversity and constitution, gut microbiota and Astrovirus infections in a neotropical bat. Molecular Ecology, 2022, 31, 3342-3359.	3.9	16
67	Flexible echolocation behavior of trawling bats during approach of continuous or transient prey cues. Frontiers in Physiology, 2013, 4, 96.	2.8	15
68	Cheating on the mutualistic contract: nutritional gain through seed predation in the frugivorous bat Chiroderma villosum (Phyllostomidae). Journal of Experimental Biology, 2015, 218, 1016-1021.	1.7	15
69	Can extreme MHC class I diversity be a feature of a wide geographic range? The example of Seba's short-tailed bat (Carollia perspicillata). Immunogenetics, 2019, 71, 575-587.	2.4	15
70	Pan African phylogeography and palaeodistribution of rousettine fruit bats: Ecogeographic correlation with Pleistocene climate vegetation cycles. Journal of Biogeography, 2019, 46, 2336-2349.	3.0	14
71	Phylogeny- and Abundance-Based Metrics Allow for the Consistent Comparison of Core Gut Microbiome Diversity Indices Across Host Species. Frontiers in Microbiology, 2021, 12, 659918.	3.5	14
72	Batâ€"bat fly interactions in Central Panama: host traits relate to modularity in a highly specialised network. Insect Conservation and Diversity, 2021, 14, 686-699.	3.0	14

#	Article	IF	CITATIONS
7 3	Parasitization of bats by bat flies (Streblidae) in fragmented habitats. Biotropica, 2020, 52, 488-501.	1.6	14
74	Abiotic and biotic drivers of functional diversity and functional composition of bird and bat assemblages along a tropical elevation gradient. Diversity and Distributions, 2021, 27, 2344-2356.	4.1	13
7 5	Bird versus bat pollination in the genus Marcgravia and the description of a new species. Curtis's Botanical Magazine, 2002, 19, 104-109.	0.3	12
76	Acoustic traits of bat-pollinated flowers compared to flowers of other pollination syndromes and their echo-based classification using convolutional neural networks. PLoS Computational Biology, 2021, 17, e1009706.	3.2	12
77	Bats and their Bat Flies: Community Composition and Host Specificity on a Pacific Island Archipelago. Acta Chiropterologica, 2018, 20, 161-176.	0.6	10
78	Bromeliads going batty: pollinator partitioning among sympatric chiropterophilous Bromeliaceae. AoB PLANTS, 2019, 11, plz014.	2.3	10
79	The Mexican mouse opossum (Marmosa mexicana) as a flower visitor at a neotropical palm. Mammalian Biology, 2009, 74, 76-80.	1.5	9
80	Unusual echolocation behaviour of the common sword-nosed bat Lonchorhina aurita: an adaptation to aerial insectivory in a phyllostomid bat?. Royal Society Open Science, 2019, 6, 182165.	2.4	9
81	Maternal mouth-to-mouth feeding behaviour in flower-visiting bats, but no experimental evidence for transmitted dietary preferences. Behavioural Processes, 2019, 165, 29-35.	1.1	8
82	Host Biology and Anthropogenic Factors Affect Hepadnavirus Infection in a Neotropical Bat. EcoHealth, 2019, 16, 82-94.	2.0	8
83	Land-use intensity and landscape structure drive the acoustic composition of grasslands. Agriculture, Ecosystems and Environment, 2022, 328, 107845.	5.3	8
84	New records of hypopigmentation in two neotropical phyllostomid bat species with different roosting habits (Uroderma bilobatum, Glossophaga soricina). Mammalia, 2017, 81, .	0.7	7
85	Maleâ€biased dispersal and the potential impact of humanâ€induced habitat modifications on the Neotropical bat <i>Trachops cirrhosus</i> . Ecology and Evolution, 2018, 8, 6065-6080.	1.9	7
86	Bats and bananas: Simplified diet of the nectar-feeding bat Glossophaga soricina (Phyllostomidae:) Tj ETQq0 0 0 0 24, e01254.	rgBT /Ovei 2.1	rlock 10 Tf 50 7
87	Distress calls of nectarivorous bats (Glossophaga soricina) encode individual and species identity. Bioacoustics, 2021, 30, 253-271.	1.7	7
88	The common noctule bat (<i>Nyctalus noctula</i>): population trends from artificial roosts and the effect of biotic and abiotic parameters on the probability of occupation. Journal of Urban Ecology, 2021, 7, .	1.5	7
89	Phylogenetic Patterns in Mouth Posture and Echolocation Emission Behavior of Phyllostomid Bats. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	6
90	Dynamic feeding habits: efficiency of frugivory in a nectarivorous bat. Canadian Journal of Zoology, 2010, 88, 764-773.	1.0	5

#	Article	IF	CITATIONS
91	Home Range of Noack's Round-Leaf Bat (Hipposiderosaff.ruber) in an Agricultural Landscape of Central Ghana. Acta Chiropterologica, 2016, 18, 239-247.	0.6	5
92	Isolation and characterization of 11 novel microsatellite loci in a West African leaf-nosed bat, Hipposideros aff. ruber. BMC Research Notes, 2014, 7, 607.	1.4	4
93	New records and range extension of Promops centralis (Chiroptera: Molossidae). Revista Mexicana De Biodiversidad, 2016, 87, 1407-1411.	0.4	4
94	Discrimination of small sugar concentration differences helps the nectar-feeding bat Leptonycteris yerbabuenae cover energetic demands. Journal of Experimental Biology, 2020, 223, .	1.7	4
95	The masked seducers: Lek courtship behavior in the wrinkle-faced bat Centurio senex (Phyllostomidae). PLoS ONE, 2020, 15, e0241063.	2.5	4
96	Tent use by Vampyressa nymphaea (Chiroptera: Phyllostomidae) in Cecropia insignis (Moraceae) in Costa Rica. Acta Chiropterologica, 2005, 7, 171-174.	0.6	3
97	Jumping the green wall: The use of PNAâ€DNA clamps to enhance microbiome sampling depth in wildlife microbiome research. Ecology and Evolution, 2020, 10, 11779-11786.	1.9	3
98	Effects of landâ€use on fruit bat distribution in different habitats along the slopes of Mt. Kilimanjaro, Tanzania. Biotropica, 2021, 53, 1063-1070.	1.6	3
99	Concordant patterns of genetic, acoustic, and morphological divergence in the West African Old World leafâ€nosed bats of the <i>Hipposideros caffer</i> complex. Journal of Zoological Systematics and Evolutionary Research, 2021, 59, 1390-1407.	1.4	3
100	A Faithful Gut: Core Features of Gastrointestinal Microbiota of Long-Distance Migratory Bats Remain Stable despite Dietary Shifts Driving Differences in Specific Bacterial Taxa. Microbiology Spectrum, 2021, 9, e0152521.	3.0	3
101	<scp>NeoBat</scp> Interactions: A data set of bat–plant interactions in the <scp>Neotropics</scp> . Ecology, 2022, 103, e3640.	3.2	3
102	First Records of Day Roosts of the Nectar-Feeding Bat <i>Lichonycteris obscura</i> (Phyllostomidae:) Tj ETQq0 0	0 rgBT /Ον	verlock 10 Tf
103	Sensory challenges for trawling bats: Finding transient prey on water surfaces. Journal of the Acoustical Society of America, 2016, 139, 1914-1922.	1.1	2
104	Flight Activity of Noack's Round-Leaf Bat (<i>Hipposideros</i> cf. <i>ruber</i>) at Two Caves in Central Ghana, West Africa. Acta Chiropterologica, 2017, 19, 347-355.	0.6	2
105	Vertical distribution of wandering spiders in Central America. Journal of Arachnology, 2018, 46, 13.	0.5	2
106	Visits at artificial RFID flowers demonstrate that juvenile flower-visiting bats perform foraging flights apart from their mothers. Mammalian Biology, 2020, 100, 463-471.	1.5	2
107	Diversity and Conservation of Cave-Roosting Bats in Central Ghana. Tropical Conservation Science, 2021, 14, 194008292110346.	1.2	2
108	Associations of bird and bat species richness with temperature and remote sensingâ€based vegetation structure on a tropical mountain. Biotropica, 2022, 54, 135-145.	1.6	2

#	Article	lF	CITATIONS
109	Rudimentary finger claws in a flower-visiting phyllostomid bat. Acta Chiropterologica, 2008, 10, 177-178.	0.6	1
110	Potential of Airborne LiDAR Derived Vegetation Structure for the Prediction of Animal Species Richness at Mount Kilimanjaro. Remote Sensing, 2022, 14, 786.	4.0	1
111	Intraspecific variability of nectar attracts different bats: the case of Pseudalcantarea viridiflora, a bromeliad with crepuscular anthesis. Acta Botanica Brasilica, 2021, 35, 597-611.	0.8	1
112	Plate 443. Marcgravia helverseniana. Curtis's Botanical Magazine, 2002, 19, 109-114.	0.3	0
113	Base metal fluxes from fig trees to soil on Barro Colorado Island, Panama: potential contribution of the common frugivorous bat Artibeus jamaicensis. Biogeochemistry, 2016, 130, 13-30.	3.5	0
114	New architecture of leaf-tents in American oil palms (<i>Elaeis oleifera</i>) used by Pacific tent-making bat (<i>Uroderma convexum</i>) in Panama. Mammalia, 2022, 86, 355-358.	0.7	0
115	Title is missing!. , 2020, 15, e0241063.		0
116	Title is missing!. , 2020, 15, e0241063.		0
117	Title is missing!. , 2020, 15, e0241063.		0
118	Title is missing!. , 2020, 15, e0241063.		0