## David G Glasser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2160216/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A geometric approach to steady flow reactors: the attainable region and optimization in concentration space. Industrial & Engineering Chemistry Research, 1987, 26, 1803-1810.            | 1.8 | 210       |
| 2  | Fischer–Tropsch synthesis over iron catalysts supported on carbon nanotubes. Applied Catalysis A:<br>General, 2005, 287, 60-67.                                                           | 2.2 | 189       |
| 3  | A study of the low temperature oxidation of coal. Fuel Processing Technology, 1989, 21, 81-97.                                                                                            | 3.7 | 118       |
| 4  | Geometry of the attainable region generated by reaction and mixing: with and without constraints.<br>Industrial & Engineering Chemistry Research, 1990, 29, 49-58.                        | 1.8 | 116       |
| 5  | The attainable region and optimal reactor structures. Chemical Engineering Science, 1990, 45, 2161-2168.                                                                                  | 1.9 | 111       |
| 6  | Fe-Ru small particle bimetallic catalysts supported on carbon nanotubes for use in Fischer–Tröpsch<br>synthesis. Applied Catalysis A: General, 2007, 328, 243-251.                        | 2.2 | 96        |
| 7  | A simplified model of spontaneous combustion in coal stockpiles. Fuel, 1986, 65, 1035-1041.                                                                                               | 3.4 | 82        |
| 8  | Fischerâ^'Tropsch Synthesis Using H <sub>2</sub> /CO/CO <sub>2</sub> Syngas Mixtures over a Cobalt<br>Catalyst. Industrial & Engineering Chemistry Research, 2010, 49, 11061-11066.       | 1.8 | 75        |
| 9  | Fischer–Tropsch Synthesis Using H <sub>2</sub> /CO/CO <sub>2</sub> Syngas Mixtures over an Iron<br>Catalyst. Industrial & Engineering Chemistry Research, 2011, 50, 11002-11012.          | 1.8 | 60        |
| 10 | Spontaneous combustion of carbonaceous stockpiles. Part II. Factors affecting the rate of the low-temperature oxidation reaction. Fuel, 2005, 84, 1161-1170.                              | 3.4 | 54        |
| 11 | Evaluating the risk of spontaneous combustion in coal stockpiles. Fuel, 1988, 67, 651-656.                                                                                                | 3.4 | 50        |
| 12 | Spontaneous combustion of carbonaceous stockpiles. Part I: the relative importance of various intrinsic coal properties and properties of the reaction system. Fuel, 2005, 84, 1151-1160. | 3.4 | 48        |
| 13 | Wastewater treatment of reactive dyestuffs by ozonation in a semi-batch reactor. Chemical Engineering Journal, 2011, 166, 662-668.                                                        | 6.6 | 47        |
| 14 | Heat transfer study with and without Fischer-Tropsch reaction in a fixed bed reactor with TiO2, SiO2, and SiC supported cobalt catalysts. Chemical Engineering Journal, 2014, 247, 75-84. | 6.6 | 45        |
| 15 | Column Profile Maps. 1. Derivation and Interpretation. Industrial & Engineering Chemistry Research, 2004, 43, 364-374.                                                                    | 1.8 | 44        |
| 16 | The effect of sulfur on supported cobalt Fischer–Tropsch catalysts. Catalysis Today, 1999, 49, 33-40.                                                                                     | 2.2 | 43        |
| 17 | Linear programming formulations for attainable region analysis. Chemical Engineering Science, 2002, 57, 2015-2028.                                                                        | 1.9 | 42        |
| 18 | The application of the attainable region analysis to comminution. Chemical Engineering Science, 2006, 61, 5969-5980.                                                                      | 1.9 | 42        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Determination of the milling parameters of a platinum group minerals ore to optimize product size distribution for flotation purposes. Minerals Engineering, 2013, 43-44, 67-78.                 | 1.8 | 41        |
| 20 | Producing Transportation Fuels with Less Work. Science, 2009, 323, 1680-1681.                                                                                                                    | 6.0 | 40        |
| 21 | Recent advances in understanding the Fischer–Tropsch synthesis (FTS) reaction. Current Opinion in<br>Chemical Engineering, 2012, 1, 296-302.                                                     | 3.8 | 38        |
| 22 | Optimal mixing for exothermic reversible reactions. Industrial & Engineering Chemistry Research, 1992, 31, 1541-1549.                                                                            | 1.8 | 35        |
| 23 | Effect of the addition of Au on Co/TiO2 catalyst for the Fischer–Tropsch reaction. Topics in Catalysis, 2007, 44, 129-136.                                                                       | 1.3 | 35        |
| 24 | Use of the attainable region analysis to optimize particle breakage in a ball mill. Chemical Engineering<br>Science, 2009, 64, 3766-3777.                                                        | 1.9 | 35        |
| 25 | The role of vapour–liquid equilibrium in Fischer–Tropsch product distribution. Chemical Engineering<br>Science, 2011, 66, 6254-6263.                                                             | 1.9 | 35        |
| 26 | Vapor recompression for efficient distillation. 1. A new synthesis perspective on standard configurations. AICHE Journal, 2013, 59, 2977-2992.                                                   | 1.8 | 35        |
| 27 | Convex attainable region projections for reactor network synthesis. Computers and Chemical Engineering, 2000, 24, 225-229.                                                                       | 2.0 | 33        |
| 28 | Study of Radial Heat Transfer in a Tubular Fischerâ^'Tropsch Synthesis Reactor. Industrial &<br>Engineering Chemistry Research, 2010, 49, 10682-10688.                                           | 1.8 | 33        |
| 29 | An attainable region analysis of the effect of ball size on milling. Powder Technology, 2011, 210, 36-46.                                                                                        | 2.1 | 33        |
| 30 | Reactor and process synthesis. Computers and Chemical Engineering, 1997, 21, S775-S783.                                                                                                          | 2.0 | 32        |
| 31 | A comparison of Au/Co/Al2O3 and Au/Co/SiO2 catalysts in the Fischer–Tropsch reaction. Applied Catalysis A: General, 2011, 395, 1-9.                                                              | 2.2 | 32        |
| 32 | The effect of CO2 on a cobalt-based catalyst for low temperature Fischer–Tropsch synthesis.<br>Chemical Engineering Journal, 2012, 193-194, 318-327.                                             | 6.6 | 32        |
| 33 | Choosing Optimal Control Policies Using the Attainable Region Approach. Industrial &<br>Engineering Chemistry Research, 1999, 38, 639-651.                                                       | 1.8 | 29        |
| 34 | Fischer–Tropsch synthesis using H2/CO/CO2 syngas mixtures: A comparison of paraffin to olefin<br>ratios for iron and cobalt based catalysts. Applied Catalysis A: General, 2012, 433-434, 58-68. | 2.2 | 29        |
| 35 | A study of Fischer-Tropsch synthesis: Product distribution of the light hydrocarbons. Applied<br>Catalysis A: General, 2016, 517, 217-226.                                                       | 2.2 | 26        |
| 36 | Column Profile Maps. 2. Singular Points and Phase Diagram Behaviour in Ideal and Nonideal Systems.<br>Industrial & Engineering Chemistry Research, 2004, 43, 3590-3603.                          | 1.8 | 25        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Thermodynamics Analysis of Processes. 1. Implications of Work Integration. Industrial &<br>Engineering Chemistry Research, 2005, 44, 3529-3537.                                                   | 1.8 | 25        |
| 38 | Application of basic process modeling in investigating the breakage behavior of UG2 ore in wet milling. Powder Technology, 2015, 279, 42-48.                                                      | 2.1 | 25        |
| 39 | The Study of Liquid-Phase Kinetics Using Temperature as a Measured Variable. Industrial & Engineering<br>Chemistry Fundamentals, 1971, 10, 516-519.                                               | 0.7 | 24        |
| 40 | Spontaneous combustion of coal stockpiles - an unusual chemical reaction engineering problem.<br>Chemical Engineering Science, 1988, 43, 2139-2145.                                               | 1.9 | 24        |
| 41 | Classification of Chemical Processes: A Graphical Approach to Process Synthesis To Improve Reactive<br>Process Work Efficiency. Industrial & Engineering Chemistry Research, 2010, 49, 8227-8237. | 1.8 | 24        |
| 42 | Packed Bed Liquid Phase Dispersion in Pulsed Gas-Liquid Downflow. Industrial & Engineering Chemistry<br>Fundamentals, 1980, 19, 66-71.                                                            | 0.7 | 23        |
| 43 | Variation of residence time with chain length for products in a slurry-phase Fischer–Tropsch<br>reactor. Journal of Catalysis, 2012, 287, 93-101.                                                 | 3.1 | 23        |
| 44 | The Attainable Region for Segregated, Maximum Mixed, and Other Reactor Models. Industrial &<br>Engineering Chemistry Research, 1994, 33, 1136-1144.                                               | 1.8 | 22        |
| 45 | An experimental validation of a specific energy-based approach for comminution. Chemical Engineering Science, 2007, 62, 2765-2776.                                                                | 1.9 | 22        |
| 46 | A laboratory scale application of the attainable region technique on a platinum ore. Powder<br>Technology, 2015, 274, 14-19.                                                                      | 2.1 | 22        |
| 47 | SELF-IGNITION AND CONVECTION PATTERNS IN AN INFINITE COAL LAYER. Chemical Engineering Communications, 1991, 105, 255-278.                                                                         | 1.5 | 21        |
| 48 | Optimal reactor structures for exothermic reversible reactions with complex kinetics. Chemical Engineering Science, 1996, 51, 2399-2407.                                                          | 1.9 | 21        |
| 49 | Improving comminution efficiency using classification: An attainable region approach. Powder Technology, 2008, 187, 252-259.                                                                      | 2.1 | 21        |
| 50 | A vapor–liquid equilibrium thermodynamic model for a Fischer–Tropsch reactor. Fluid Phase<br>Equilibria, 2012, 314, 38-45.                                                                        | 1.4 | 21        |
| 51 | A Continuation Method for Nonlinear Regression. SIAM Journal on Numerical Analysis, 1981, 18, 1139-1154.                                                                                          | 1.1 | 20        |
| 52 | Scale-up of batch grinding data for simulation of industrial milling of platinum group minerals ore.<br>Minerals Engineering, 2014, 63, 100-109.                                                  | 1.8 | 20        |
| 53 | A long term study of the gas phase of low pressure Fischer-Tropsch products when reducing an iron<br>catalyst with three different reducing gases. Applied Catalysis A: General, 2017, 534, 1-11. | 2.2 | 20        |
| 54 | Olefin pseudo-equilibrium in the Fischer–Tropsch reaction. Chemical Engineering Journal, 2012,<br>181-182, 667-676.                                                                               | 6.6 | 19        |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Numerical Solution of Two-Point Boundary Value Problems on Total Differential Equations. SIAM<br>Journal on Numerical Analysis, 1969, 6, 591-597.                                                           | 1.1 | 18        |
| 56 | Analysis of rectilinear rivulet flow. AICHE Journal, 1976, 22, 772-779.                                                                                                                                     | 1.8 | 18        |
| 57 | Synthesis and Integration of Chemical Processes from a Mass, Energy, and Entropy Perspective.<br>Industrial & Engineering Chemistry Research, 2007, 46, 8756-8766.                                          | 1.8 | 18        |
| 58 | Complex Column Design by Application of Column Profile Map Techniques: Sharp-Split Petlyuk Column<br>Design. Industrial & Engineering Chemistry Research, 2010, 49, 327-349.                                | 1.8 | 18        |
| 59 | Application of attainable region theory to batch reactors. Chemical Engineering Science, 2013, 99, 203-214.                                                                                                 | 1.9 | 18        |
| 60 | Analysis of an exothermic reversible reaction in a catalytic reactor with periodic flow reversal.<br>Chemical Engineering Science, 1992, 47, 1825-1837.                                                     | 1.9 | 17        |
| 61 | Making Sense of the Fischerâ ° Tropsch Synthesis Reaction: Start-Up. Industrial & Engineering<br>Chemistry Research, 2010, 49, 9753-9758.                                                                   | 1.8 | 17        |
| 62 | Estimating rate constants of contaminant removal in constructed wetlands treating winery effluent:<br>A comparison of three different methods. Chemical Engineering Research and Design, 2014, 92, 903-916. | 2.7 | 17        |
| 63 | Desulphurization of diesel fuels using intermediate Lewis acids loaded on activated charcoal and alumina. Chemical Engineering Communications, 2019, 206, 572-580.                                          | 1.5 | 17        |
| 64 | DRIFT spectroscopy and optical reflectance of heat-treated coal from a quenched gasifier. Fuel, 1995, 74, 1216-1219.                                                                                        | 3.4 | 16        |
| 65 | The attainable region and process synthesis: reaction systems with external cooling and heating.<br>Chemical Engineering Science, 2001, 56, 173-191.                                                        | 1.9 | 16        |
| 66 | Novel separation system design using "moving triangles― Computers and Chemical Engineering, 2004,<br>29, 181-189.                                                                                           | 2.0 | 16        |
| 67 | Fischer–Tröpsch synthesis over Co/TiO2: Effect of ethanol addition. Fuel, 2007, 86, 73-80.                                                                                                                  | 3.4 | 16        |
| 68 | Reactive distillation in conventional Fischer–Tropsch reactors. Fuel Processing Technology, 2015, 130,<br>54-61.                                                                                            | 3.7 | 16        |
| 69 | Optimal catalyst concentration profile for bifunctional catalysts. Journal of Optimization Theory and Applications, 1972, 10, 94-108.                                                                       | 0.8 | 14        |
| 70 | A GENERAL MIXING MODEL FOR STEADY FLOW CHEMICAL REACTORS. Chemical Engineering Communications, 1986, 42, 17-35.                                                                                             | 1.5 | 14        |
| 71 | Variables indicating the cost of vapour-liquid equilibrium separation processes. Chemical Engineering Science, 1996, 51, 4749-4757.                                                                         | 1.9 | 14        |
| 72 | A graphical approach to process synthesis and its application to steam reforming. AICHE Journal, 2013, 59, 3714-3729.                                                                                       | 1.8 | 14        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Turning wine (waste) into water: Toward technological advances in the use of constructed wetlands for winery effluent treatment. AICHE Journal, 2014, 60, 420-431.                                                 | 1.8 | 14        |
| 74 | Variation of the Short-Chain Paraffin and Olefin Formation Rates with Time for a Cobalt<br>Fischer–Tropsch Catalyst. Industrial & Engineering Chemistry Research, 2017, 56, 469-478.                               | 1.8 | 14        |
| 75 | Process synthesis for reaction systems with cooling via finding the Attainable Region. Computers and Chemical Engineering, 1997, 21, S35-S40.                                                                      | 2.0 | 14        |
| 76 | Predicting phase and chemical equilibrium using the convex hull of the Gibbs free energy. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994, 54, 187-197.                             | 0.1 | 13        |
| 77 | The Attainable Region and Pontryagin's Maximum Principle. Industrial & Engineering Chemistry<br>Research, 1999, 38, 652-659.                                                                                       | 1.8 | 13        |
| 78 | A Process Synthesis Approach To Investigate the Effect of the Probability of Chain Growth on the<br>Efficiency of Fischerâ^Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2006, 45,<br>5928-5935. | 1.8 | 13        |
| 79 | A Thermodynamic Approach to Olefin Product Distribution in Fischer–Tropsch Synthesis. Industrial<br>& Engineering Chemistry Research, 2012, 51, 16544-16551.                                                       | 1.8 | 13        |
| 80 | Use of the attainable region approach to determine major trends and optimize particle breakage in a<br>laboratory mill. Powder Technology, 2016, 291, 414-419.                                                     | 2.1 | 13        |
| 81 | Kinetics of dissolution of β-uranium trioxide in acid and carbonate solutions. Journal of the Chemical Society Dalton Transactions, 1977, , 1939-1946.                                                             | 1.1 | 12        |
| 82 | Properties of certain zero column-sum matrices with applications to the optimization of chemical reactors. Journal of Mathematical Analysis and Applications, 1980, 73, 315-337.                                   | 0.5 | 12        |
| 83 | Process synthesis for reaction systems with cooling via finding the Attainable Region. Computers and Chemical Engineering, 1997, 21, S35-S40.                                                                      | 2.0 | 12        |
| 84 | Effect of cobalt carboxylate precursor chain length on Fischer-Tröpsch cobalt/alumina catalysts.<br>Applied Catalysis A: General, 2007, 326, 164-172.                                                              | 2.2 | 12        |
| 85 | A New Way to Look at Fischerâ^'Tropsch Synthesis Using Flushing Experiments. Industrial &<br>Engineering Chemistry Research, 2011, 50, 4359-4365.                                                                  | 1.8 | 12        |
| 86 | Low-Pressure Fischer–Tropsch Synthesis: In Situ Oxidative Regeneration of Iron Catalysts. Industrial<br>& Engineering Chemistry Research, 2017, 56, 4267-4274.                                                     | 1.8 | 12        |
| 87 | The Measurement and Interpretation of Contact Time Distributions for Catalytic Reactor Characterization. Industrial & Engineering Chemistry Fundamentals, 1973, 12, 165-173.                                       | 0.7 | 11        |
| 88 | ZWIETERING'S MAXIMUM-MIXED REACTOR MODEL AND THE EXISTENCE OF MULTIPLE STEADY STATES.<br>Chemical Engineering Communications, 1986, 40, 41-48.                                                                     | 1.5 | 11        |
| 89 | Fischerâ^'Tropsch Results and Their Analysis for Reactor Synthesis. Industrial & Engineering<br>Chemistry Research, 2005, 44, 5987-5994.                                                                           | 1.8 | 11        |
| 90 | Application of Membrane Residue Curve Maps to Batch and Continuous Processes. Industrial &<br>Engineering Chemistry Research, 2008, 47, 2361-2376.                                                                 | 1.8 | 11        |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Recursive constant control policy algorithm for attainable regions analysis. Computers and Chemical Engineering, 2009, 33, 309-320.                                                                               | 2.0 | 11        |
| 92  | A Revised Method of Attainable Region Construction Utilizing Rotated Bounding Hyperplanes.<br>Industrial & Engineering Chemistry Research, 2010, 49, 10549-10557.                                                 | 1.8 | 11        |
| 93  | Work to Chemical Processes: The Relationship between Heat, Temperature, Pressure, and Process<br>Complexity. Industrial & Engineering Chemistry Research, 2011, 50, 8603-8619.                                    | 1.8 | 11        |
| 94  | Effects of CO <sub>2</sub> on South African fresh water microalgae growth. Environmental<br>Progress and Sustainable Energy, 2012, 31, 24-28.                                                                     | 1.3 | 11        |
| 95  | Liquid Fuels from Alternative Carbon Sources Minimizing Carbon Dioxide Emissions. AICHE Journal, 2013, 59, 2062-2078.                                                                                             | 1.8 | 11        |
| 96  | Kinetics of the Decomposition of Hydrogen Peroxide in Acidic Copper Sulfate Solutions. Industrial<br>& Engineering Chemistry Research, 2015, 54, 5589-5597.                                                       | 1.8 | 11        |
| 97  | Use of the attainable region method to simulate a full-scale ball mill with a realistic transport model.<br>Minerals Engineering, 2015, 73, 116-123.                                                              | 1.8 | 11        |
| 98  | A Study of the Fischer–Tropsch Synthesis in a Batch Reactor: Rate, Phase of Water, and Catalyst<br>Oxidation. Energy & Fuels, 2017, 31, 7405-7412.                                                                | 2.5 | 11        |
| 99  | Optimal catalyst concentration profile for bifunctional catalyst: Langmuirian kinetics. Chemical Engineering Science, 1973, 28, 1685-1689.                                                                        | 1.9 | 10        |
| 100 | Derivation and Properties of Membrane Residue Curve Maps. Industrial & Engineering Chemistry<br>Research, 2006, 45, 9080-9087.                                                                                    | 1.8 | 10        |
| 101 | Synthesizing a Process from Experimental Results:Â A Fischerâ^'Tropsch Case Study. Industrial &<br>Engineering Chemistry Research, 2007, 46, 156-167.                                                             | 1.8 | 10        |
| 102 | Low-pressure methanol/ dimethylether synthesis from syngas on gold-based catalysts. Gold Bulletin, 2007, 40, 219-224.                                                                                             | 3.2 | 10        |
| 103 | Using the attainable region analysis to determine the effect of process parameters on breakage in a ball mill. AICHE Journal, 2012, 58, 2665-2673.                                                                | 1.8 | 10        |
| 104 | Gasoline Preblending for Energy-Efficient Bioethanol Recovery. Energy & Fuels, 2016, 30, 8286-8291.                                                                                                               | 2.5 | 10        |
| 105 | Effect of feeding nitrogen to a fixed bed Fischer–Tropsch reactor while keeping the partial pressures of reactants the same. Chemical Engineering Journal, 2016, 293, 151-160.                                    | 6.6 | 10        |
| 106 | Automatically Controlled Adiabatic Reactor for Reaction Rate Studies. Review of Scientific<br>Instruments, 1967, 38, 209-214.                                                                                     | 0.6 | 9         |
| 107 | Continuous Thickening in a Pilot Plant. Industrial & Engineering Chemistry Fundamentals, 1976, 15, 23-30.                                                                                                         | 0.7 | 9         |
| 108 | The attainable region for systems with mixing and multiple-rate processes: finding optimal reactor<br>structures. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994, 54,<br>175-186. | 0.1 | 9         |

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Automating reactor network synthesis: finding a candidate attainable region for the water–gas shift<br>(WGS) reaction. Computers and Chemical Engineering, 2004, 28, 149-160.                                                      | 2.0 | 9         |
| 110 | The Oxidative Dehydrogenation ofn-Butane in a Fixed-Bed Reactor and in an Inert Porous Membrane<br>ReactorMaximizing the Production of Butenes and Butadiene. Industrial & Engineering Chemistry<br>Research, 2006, 45, 2661-2671. | 1.8 | 9         |
| 111 | Conversion of Synthesis Gas to Dimethylether Over Gold-based Catalysts. Topics in Catalysis, 2012, 55, 771-781.                                                                                                                    | 1.3 | 9         |
| 112 | Distribution between C2 and C3 in low temperature Fischer–Tropsch synthesis over a TiO2-supported cobalt catalyst. Applied Catalysis A: General, 2015, 506, 67-76.                                                                 | 2.2 | 9         |
| 113 | Crystallization of ammonium paratungstate — a comparison between batch and continuous<br>crystallizers. Hydrometallurgy, 1976, 2, 185-191.                                                                                         | 1.8 | 8         |
| 114 | Can the Operating Leaves of a Distillation Column Really Be Expanded?. Industrial & Engineering Chemistry Research, 2005, 44, 7511-7519.                                                                                           | 1.8 | 8         |
| 115 | The oxidative dehydrogenation of n-butane in a differential side-stream catalytic membrane reactor.<br>Catalysis Today, 2010, 156, 237-245.                                                                                        | 2.2 | 8         |
| 116 | Column profile maps as a tool for synthesizing complex column configurations. Computers and Chemical Engineering, 2010, 34, 1487-1496.                                                                                             | 2.0 | 8         |
| 117 | A new method of locating all pinch points in nonideal distillation systems, and its application to pinch point loci and distillation boundaries. Computers and Chemical Engineering, 2011, 35, 1072-1087.                          | 2.0 | 8         |
| 118 | Process flow sheet synthesis: Reaching targets for idealized coal gasification. AICHE Journal, 2014, 60, 3258-3266.                                                                                                                | 1.8 | 8         |
| 119 | Experimental Simulation of Three-Dimensional Attainable Region for the Synthesis of Exothermic<br>Reversible Reaction: Ethyl Acetate Synthesis Case Study. Industrial & Engineering Chemistry<br>Research, 2015, 54, 2619-2626.    | 1.8 | 8         |
| 120 | Application of the attainable region method to determine optimal conditions for milling and leaching.<br>Powder Technology, 2017, 317, 400-407.                                                                                    | 2.1 | 8         |
| 121 | First order kinetics in continuous reactors. Chemical Engineering Science, 1973, 28, 617-621.                                                                                                                                      | 1.9 | 7         |
| 122 | Thermal convection and surface temperatures in porous media. International Journal of Heat and Mass Transfer, 1990, 33, 1321-1330.                                                                                                 | 2.5 | 7         |
| 123 | Liquid-phase diffusion and adsorption of pyridine in porous silica-alumina pellets. AICHE Journal, 1984, 30, 593-599.                                                                                                              | 1.8 | 6         |
| 124 | An experimental simulation of distillation column concentration profiles using a batch apparatus.<br>Chemical Engineering Science, 2003, 58, 479-486.                                                                              | 1.9 | 6         |
| 125 | Application of the Attainable Region Concept to the Oxidative Dehydrogenation of 1-Butene in Inert<br>Porous Membrane Reactors. Industrial & Engineering Chemistry Research, 2004, 43, 1827-1831.                                  | 1.8 | 6         |
| 126 | Study of Carbon Monoxide Hydrogenation Over Supported Au Catalysts. Studies in Surface Science and Catalysis, 2007, 163, 141-151.                                                                                                  | 1.5 | 6         |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Systems approach to reducing energy usage and carbon dioxide emissions. AICHE Journal, 2009, 55, 2202-2207.                                                                                                                                         | 1.8 | 6         |
| 128 | Experimental Simulation of a Two-Dimensional Attainable Region and Its Application in the<br>Optimization of Production Rate and Process Time of an Adiabatic Batch Reactor. Industrial &<br>Engineering Chemistry Research, 2014, 53, 13308-13319. | 1.8 | 6         |
| 129 | Batch Distillation Targets for Minimum Energy Consumption. Industrial & Engineering Chemistry Research, 2014, 53, 2751-2757.                                                                                                                        | 1.8 | 6         |
| 130 | Making processes work. Computers and Chemical Engineering, 2015, 81, 22-31.                                                                                                                                                                         | 2.0 | 6         |
| 131 | Applying thermodynamics to digestion/gasification processes: the Attainable Region approach. Journal of Thermal Analysis and Calorimetry, 2018, 131, 25-36.                                                                                         | 2.0 | 6         |
| 132 | An experimental and modeling study of fires in ventilated ducts. Part I: Liquid fuels. Combustion and Flame, 1994, 96, 428-442.                                                                                                                     | 2.8 | 5         |
| 133 | A catalytic trap for low-temperature complete NO reduction in oxygen-rich media. Chemical<br>Communications, 1996, , 2081.                                                                                                                          | 2.2 | 5         |
| 134 | A periodic flow reversal reactor: An infinitely fast switching model and a practical proposal for its implementation. Canadian Journal of Chemical Engineering, 1996, 74, 760-765.                                                                  | 0.9 | 5         |
| 135 | An experimental and modeling study of fires in ventilated ducts. Part II: PMMA and stratification.<br>Combustion and Flame, 1996, 104, 138-156.                                                                                                     | 2.8 | 5         |
| 136 | Fischer-Tropsch synthesis: DRIFTS and SIMS surface investigation of Co and Co/Ru on titania supports.<br>Studies in Surface Science and Catalysis, 1997, 107, 243-248.                                                                              | 1.5 | 5         |
| 137 | The cost of crossing reaction equilibrium in a system that is overall adiabatic. Computers and Chemical Engineering, 2002, 26, 803-809.                                                                                                             | 2.0 | 5         |
| 138 | Reactive column profile map topology: Continuous distillation column with non-reversible kinetics.<br>Computers and Chemical Engineering, 2008, 32, 622-629.                                                                                        | 2.0 | 5         |
| 139 | Efficient Combustion: A Process Synthesis Approach to Improve the Efficiency of Coal-Fired Power Stations. Industrial & amp; Engineering Chemistry Research, 2012, 51, 9061-9077.                                                                   | 1.8 | 5         |
| 140 | Fischer-Tropsch synthesis: A long term comparative study of the product selectivity and paraffin to<br>olefin ratios over an iron-based catalyst activated by syngas or H2. Applied Catalysis A: General, 2020,<br>602, 117700.                     | 2.2 | 5         |
| 141 | Parameter variation for the solution of two-point boundary-value problems and applications in the calculus of variations. Journal of Optimization Theory and Applications, 1974, 13, 164-178.                                                       | 0.8 | 4         |
| 142 | Thermal determination of the kinetics of the iron(III)–tin(II) redox reaction in chloride solution.<br>Journal of the Chemical Society Faraday Transactions I, 1975, 71, 1413.                                                                      | 1.0 | 4         |
| 143 | Bounds and approximate solutions to linear problems with nonlinear boundary conditions:<br>Solidification of a slab. AICHE Journal, 1978, 24, 161-170.                                                                                              | 1.8 | 4         |
| 144 | Attainable products for the vapour-liquid separation of homogeneous ternary mixtures. The Chemical<br>Engineering Journal and the Biochemical Engineering Journal, 1995, 59, 51-70.                                                                 | 0.1 | 4         |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | An anatomic and physiological model of hepatic vascular system. Journal of Applied Physiology, 1995, 79, 1008-1026.                                                                                             | 1.2 | 4         |
| 146 | Efficiency of Polymer Beads in the Removal of Heparin: Toward the Development of a Novel Reactor.<br>Artificial Cells, Blood Substitutes, and Biotechnology, 2006, 34, 419-432.                                 | 0.9 | 4         |
| 147 | Environmental impacts of electric vehicles in South Africa. South African Journal of Science, 2012, 108, .                                                                                                      | 0.3 | 4         |
| 148 | Attainable regions for a reactor: Application of ΔH–ΔG plot. Chemical Engineering Research and Design,<br>2012, 90, 1590-1609.                                                                                  | 2.7 | 4         |
| 149 | A thermodynamic approach toward defining the limits of biogas production. AICHE Journal, 2015, 61, 4270-4276.                                                                                                   | 1.8 | 4         |
| 150 | Lu Plot and Yao Plot: Models To Analyze Product Distribution of Long-Term Gas-Phase<br>Fischer–Tropsch Synthesis Experimental Data on an Iron Catalyst. Energy & Fuels, 2017, 31,<br>5682-5690.                 | 2.5 | 4         |
| 151 | Process flow sheet synthesis: Systemsâ€level design applied to synthetic crude production. AICHE<br>Journal, 2017, 63, 5413-5424.                                                                               | 1.8 | 4         |
| 152 | â€~Costing' distillation systems from residue curve based designs. Computers and Chemical Engineering,<br>2000, 24, 1275-1280.                                                                                  | 2.0 | 3         |
| 153 | Expanding the operating leaves in distillation column sections by distributed feed addition and sidestream withdrawal. Computer Aided Chemical Engineering, 2003, 15, 1050-1057.                                | 0.3 | 3         |
| 154 | Experimental simulation of distillation concentration profiles using batch apparatus: Column stripping section. Chemical Engineering Science, 2005, 60, 6815-6823.                                              | 1.9 | 3         |
| 155 | On Column Profile Maps: An Analysis of Sharp Splits. Industrial & Engineering Chemistry Research, 2011, 50, 6331-6342.                                                                                          | 1.8 | 3         |
| 156 | A Graphical Method of Improving the Production Rate from Batch Reactors. Industrial &<br>Engineering Chemistry Research, 2012, 51, 13562-13573.                                                                 | 1.8 | 3         |
| 157 | Steady-State Attainment Period for Fischer–Tropsch Products. Topics in Catalysis, 2014, 57, 582-587.                                                                                                            | 1.3 | 3         |
| 158 | Experimental Measurement of the Saddle Node Region in a Distillation Column Profile Map by Using a<br>Batch Apparatus. Chemical Engineering Research and Design, 2007, 85, 24-30.                               | 2.7 | 2         |
| 159 | The effect of poly-l-lysine/alginate bead membrane characteristics on the absorption of heparin.<br>Artificial Cells, Blood Substitutes, and Biotechnology, 2009, 37, 13-22.                                    | 0.9 | 2         |
| 160 | Candidate Attainable Regions for the Oxidative Dehydrogenation of n-Butane using the Recursive<br>Constant Control (RCC) Policy Algorithm. Industrial & Engineering Chemistry Research, 2009, 48,<br>5211-5222. | 1.8 | 2         |
| 161 | An overall thermodynamic view of processes: Comparison of fuel producing processes. Chemical<br>Engineering Research and Design, 2010, 88, 844-860.                                                             | 2.7 | 2         |
| 162 | Introducing novel graphical techniques to assess gasification. Energy Conversion and Management, 2011, 52, 547-563.                                                                                             | 4.4 | 2         |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Thermodynamic considerations in renal separation processes. Theoretical Biology and Medical Modelling, 2017, 14, 2.                                                                                          | 2.1 | 2         |
| 164 | The response of linear cascades to variations of holding times. Chemical Engineering Science, 1980, 35, 2281-2285.                                                                                           | 1.9 | 1         |
| 165 | Binding isotherms by continuous-flow dynamic dialysis. Journal of Pharmaceutical and Biomedical<br>Analysis, 1986, 4, 461-474.                                                                               | 1.4 | 1         |
| 166 | The low temperature oxidation of coal taken from near a dolerite intrusion. Fuel Processing<br>Technology, 1988, 18, 201-208.                                                                                | 3.7 | 1         |
| 167 | Automating Reactor Network Synthesis: Finding a Candidate Attainable Region for Water-Gas<br>Shift(WGS) Reaction. Computer Aided Chemical Engineering, 2002, 10, 217-222.                                    | 0.3 | 1         |
| 168 | Novel separation system design using "moving triangles― Computer Aided Chemical Engineering, 2003, ,<br>832-839.                                                                                             | 0.3 | 1         |
| 169 | Feed distribution in distillation: Assessing benefits and limits with column profile maps and rigorous process simulation. AICHE Journal, 2013, 59, 1668-1683.                                               | 1.8 | 1         |
| 170 | Thermodynamic optimization of steady-flow industrial chemical processes. International Journal of<br>Industrial Chemistry, 2018, 9, 353-361.                                                                 | 3.1 | 1         |
| 171 | Development trajectory of the attainable region optimization method: Trends and opportunities for applications in the waste-to-energy field. South African Journal of Chemical Engineering, 2020, 32, 13-26. | 1.2 | 1         |
| 172 | Process Synthesis Targets. , 2009, , 699-708.                                                                                                                                                                |     | 1         |
| 173 | Comment on"solution of nonlinear boundary value problems—Va. A novel method: general parameter<br>mapping (GPM)― Chemical Engineering Science, 1973, 28, 985.                                                | 1.9 | 0         |
| 174 | Surface effects in torque transmission experiments in a couette apparatus. Journal of Colloid and<br>Interface Science, 1974, 49, 82-88.                                                                     | 5.0 | 0         |
| 175 | SPONTANEOUS COMBUSTION OF COAL STOCKPILES - AN UNUSUAL CHEMICAL REACTION ENGINEERING PROBLEM. , 1988, , 2139-2145.                                                                                           |     | 0         |
| 176 | Chemical Engineering research in South Africa. The Chemical Engineering Journal and the Biochemical<br>Engineering Journal, 1994, 54, ix.                                                                    | 0.1 | 0         |
| 177 | Modeling Coupled Distillation Column Sections Using Profile Maps. Computer Aided Chemical Engineering, 2002, , 211-216.                                                                                      | 0.3 | 0         |
| 178 | Application of process synthesis methodology to biomedical engineering for the development of artificial organs. Computer Aided Chemical Engineering, 2003, 15, 1216-1221.                                   | 0.3 | 0         |
| 179 | MaPS (managed process synthesis). A methodology, integrated with the experimental programme, to develop a flow sheet. $\hat{a} \in $ A first step. Computer Aided Chemical Engineering, 2003, , 1328-1333.   | 0.3 | 0         |
| 180 | DSR algorithm for construction of Attainable Region structure. Computer Aided Chemical Engineering, 2003, , 594-599.                                                                                         | 0.3 | 0         |

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Make distillation boundaries work for you!. Computer Aided Chemical Engineering, 2004, 18, 499-504.                                                                             | 0.3 | 0         |
| 182 | Adapting Process Unit Relations in Experimental Data Weighting Procedures: A Phase Equilibrium Case<br>Study. Industrial & Engineering Chemistry Research, 2010, 49, 1975-1981. | 1.8 | 0         |
| 183 | Synthesis of Two-Membrane Permeation Processes Using Residue Curve Maps and Node Classification.<br>Industrial & Engineering Chemistry Research, 2013, 52, 14637-14646.         | 1.8 | Ο         |
| 184 | Estimating Thermodynamic and Equilibrium Quantities of Exothermic Reversible Processes. Industrial<br>& Engineering Chemistry Research, 2013, 52, 7630-7639.                    | 1.8 | 0         |
| 185 | Experimental Measurement of Membrane Residue Curve Maps. Industrial & Engineering Chemistry<br>Research, 2013, 52, 11142-11150.                                                 | 1.8 | Ο         |
| 186 | Designing a Waste to Energy Plant for Informal Settlements. Computer Aided Chemical Engineering, 2014, , 609-614.                                                               | 0.3 | 0         |
| 187 | Geometry and reactor synthesis: maximizing conversion of the ethyl acetate process. International<br>Journal of Industrial Chemistry, 2015, 6, 77-83.                           | 3.1 | Ο         |
| 188 | Batch Partial Emptying and Filling To Improve the Production Rate of Algae. Industrial &<br>Engineering Chemistry Research, 2015, 54, 12492-12502.                              | 1.8 | 0         |
| 189 | Gasoline pre-blending processes for efficient ethanol recovery: effects of process parameters and process modifications for improved performance. Biofuels, 2021, 12, 625-632.  | 1.4 | Ο         |
| 190 | Computer-aided Graphical Tools for Synthesizing Complex Column Configurations. , 2009, , 1007-1015.                                                                             |     | 0         |
| 191 | Microbial fuel and chemical production using sweet potatoes. , 2010, , .                                                                                                        |     | 0         |
| 192 | Process Flow-Sheet Synthesis: Systems-Level Design applied to Synthetic Crude Production. Computer<br>Aided Chemical Engineering, 2017, 40, 643-648.                            | 0.3 | 0         |