José M Mota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2160203/publications.pdf

Version: 2024-02-01

			393982	3	395343
	38	2,276	19		33
	papers	citations	h-index		g-index
Ī					
	39	39	39		4637
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Phase 3 Randomized Controlled Trial of Androgen Deprivation Therapy with or Without Docetaxel in High-risk Biochemically Recurrent Prostate Cancer After Surgery (TAX3503). European Urology Oncology, 2021, 4, 543-552.	2.6	11
2	Tumor Microenvironment-Derived NRG1 Promotes Antiandrogen Resistance in Prostate Cancer. Cancer Cell, 2020, 38, 279-296.e9.	7.7	135
3	Fibroblast Growth Factor Receptor 3 Alteration Status is Associated with Differential Sensitivity to Platinum-based Chemotherapy in Locally Advanced and Metastatic Urothelial Carcinoma. European Urology, 2020, 78, 907-915.	0.9	21
4	Paradoxical interaction between cancer and long-term postsepsis disorder: impairment of de novo carcinogenesis versus favoring the growth of established tumors., 2020, 8, e000129.		5
5	Pan-cancer Analysis of CDK12 Alterations Identifies a Subset of Prostate Cancers with Distinct Genomic and Clinical Characteristics. European Urology, 2020, 78, 671-679.	0.9	72
6	Platinum-Based Chemotherapy in Metastatic Prostate Cancer With DNA Repair Gene Alterations. JCO Precision Oncology, 2020, 4, 355-366.	1.5	93
7	Clinicogenomic predictors of extreme responses to anti-PD1/PDL1 checkpoint inhibitors (CPI) in metastatic urothelial cancer (mUC) Journal of Clinical Oncology, 2020, 38, 5050-5050.	0.8	O
8	Acquired Lipodystrophy Associated With Nivolumab in a Patient With Advanced Renal Cell Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3245-3248.	1.8	33
9	Measuring the unmeasurable: automated bone scan index as a quantitative endpoint in prostate cancer clinical trials. Prostate Cancer and Prostatic Diseases, 2019, 22, 522-530.	2.0	15
10	CCR5-Positive Inflammatory Monocytes are Crucial for Control of Sepsis. Shock, 2019, 52, e100-e106.	1.0	12
11	Platinum-based chemotherapy in metastatic prostate cancer with alterations in DNA damage repair genes Journal of Clinical Oncology, 2019, 37, 5038-5038.	0.8	5
12	Abstract 111: Tumor microenvironment derived NRG1 promotes antiandrogen resistance in prostate cancer. , 2019, , .		0
13	Evaluation of 18F-FDG PET-CT as a prognostic marker in advanced biliary tract cancer. Nuclear Medicine Communications, 2018, 39, 252-259.	0.5	1
14	Pembrolizumab for metastatic adrenocortical carcinoma with high mutational burden. Medicine (United States), 2018, 97, e13517.	0.4	19
15	Paclitaxel Reduces Tumor Growth by Reprogramming Tumor-Associated Macrophages to an M1 Profile in a TLR4-Dependent Manner. Cancer Research, 2018, 78, 5891-5900.	0.4	283
16	The Rising Incidence of Younger Patients With Colorectal Cancer: Questions About Screening, Biology, and Treatment. Current Treatment Options in Oncology, 2017, 18, 23.	1.3	165
17	Wnt/beta-catenin pathway: modulating anticancer immune response. Journal of Hematology and Oncology, 2017, 10, 101.	6.9	448
18	A comprehensive review of heregulins, HER3, and HER4 as potential therapeutic targets in cancer. Oncotarget, 2017, 8, 89284-89306.	0.8	52

#	Article	IF	Citations
19	Complications from carcinoid syndrome: review of the current evidence. Ecancermedicalscience, 2016, 10, 662.	0.6	67
20	Review on TAS-102 development and its use for metastatic colorectal cancer. Critical Reviews in Oncology/Hematology, 2016, 104, 91-97.	2.0	6
21	Irinotecan- and 5-fluorouracil-induced intestinal mucositis: insights into pathogenesis and therapeutic perspectives. Cancer Chemotherapy and Pharmacology, 2016, 78, 881-893.	1.1	113
22	Response to Paclitaxel in an Adult Patient with Advanced Kaposiform Hemangioendothelioma. Case Reports in Oncology, 2016, 9, 481-487.	0.3	6
23	Post-Sepsis State Induces Tumor-Associated Macrophage Accumulation through CXCR4/CXCL12 and Favors Tumor Progression in Mice. Cancer Immunology Research, 2016, 4, 312-322.	1.6	45
24	Neutrophil Extracellular Traps Induce Organ Damage during Experimental and Clinical Sepsis. PLoS ONE, 2016, 11, e0148142.	1.1	282
25	Abstract 770: Negative regulation of the CCL22/CCR4 axis by TNFR1 improves melanoma outcome. , 2016, ,		0
26	Target Inhibition of IL-1 Receptor Prevents Ifosfamide Induced Hemorrhagic Cystitis in Mice. Journal of Urology, 2015, 194, 1777-1786.	0.2	19
27	A novel model of megavoltage radiation-induced oral mucositis in hamsters: Role of inflammatory cytokines and nitric oxide. International Journal of Radiation Biology, 2015, 91, 500-509.	1.0	13
28	Inflammatory intestinal damage induced by 5-fluorouracil requires IL-4. Cytokine, 2013, 61, 46-49.	1.4	66
29	Chemotherapy-induced hemorrhagic cystitis: pathogenesis, pharmacological approaches and new insights. Journal of Experimental and Integrative Medicine, 2012, 2, 95.	0.1	25
30	Role of Capsaicin-Sensitive Primary Afferent Neurons and Non-protein Sulphydryl Groups on Gastroprotective Effect of Amifostine Against Ethanol-Induced Gastric Damage in Rats. Digestive Diseases and Sciences, 2011, 56, 314-322.	1.1	5
31	Role of platelet-activating factor in the pathogenesis of 5-fluorouracil-induced intestinal mucositis in mice. Cancer Chemotherapy and Pharmacology, 2011, 68, 713-720.	1.1	37
32	Gastric damage induced by different doses of indomethacin in rats is variably affected by inhibiting iNOS or leukocyte infiltration. Inflammation Research, 2008, 57, 28-33.	1.6	23
33	Gastrointestinal dysmotility in 5-fluorouracil-induced intestinal mucositis outlasts inflammatory process resolution. Cancer Chemotherapy and Pharmacology, 2008, 63, 91-98.	1.1	120
34	Induction of COX-2 expression by acrolein in the rat model of hemorrhagic cystitis. Experimental and Toxicologic Pathology, 2008, 59, 425-430.	2.1	12
35	Interleukin-11 attenuates ifosfamide-induced hemorrhagic cystitis. International Braz J Urol: Official Journal of the Brazilian Society of Urology, 2007, 33, 704-710.	0.7	10
36	Amifostine (Wr-2721) Prevents Indomethacin-Induced Gastric Damage in Rats: Role of Non-Protein Sulfhydryl Groups and Leukocyte Adherence. Digestive Diseases and Sciences, 2007, 52, 119-125.	1.1	12

#	Article	IF	CITATIONS
37	Re: Interleukin-11 attenuates ifosfamide-induced hemorrhagic cystitis. International Braz J Urol: Official Journal of the Brazilian Society of Urology, 2007, 33, 852-853.	0.7	1
38	Amifostine and glutathione prevent ifosfamide- and acrolein-induced hemorrhagic cystitis. Cancer Chemotherapy and Pharmacology, 2006, 59, 71-77.	1.1	44