Yi-Jun Jen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2160187/publications.pdf

Version: 2024-02-01

516710 289244 1,639 73 16 40 h-index citations g-index papers 74 74 74 2124 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design of a Hyperbolic Metamaterial as a Waveguide for Low-Loss Propagation of Plasmonic Wave. Symmetry, 2021, 13, 291.	2.2	3
2	Obliquely Bideposited TiN Thin Film with Morphology-Dependent Optical Properties. Coatings, 2021, 11, 1418.	2.6	O
3	Bideposited silver nanocolloid arrays with strong plasmon-induced birefringence for SERS application. Scientific Reports, 2020, 10, 20143.	3.3	9
4	Deposited ultra-thin titanium nitride nanorod array as a plasmonic near-perfect light absorber. Scientific Reports, 2020, 10, 22269.	3.3	8
5	Symmetric Metaâ€Absorberâ€Induced Superchirality. Advanced Optical Materials, 2019, 7, 1901038.	7.3	12
6	Circular Dichroism Enhancement: Symmetric Metaâ€Absorberâ€Induced Superchirality (Advanced Optical) Tj ETo	Qq Q , Q 0 rg	gBT_/Overlock
7	Obliquely Deposited Titanium Nitride Nanorod Arrays as Surface-Enhanced Raman Scattering Substrates. Sensors, 2019, 19, 4765.	3.8	11
8	Tunable Plasmonic Resonances in TiN Nanorod Arrays. Coatings, 2019, 9, 863.	2.6	4
9	Design a Stratiform Metamaterial with Precise Optical Property. Symmetry, 2019, 11, 1464.	2.2	3
10	Optical coatings for metamaterials. , 2019, , .		0
11	Surface-Enhanced Raman Scattering from Obliquely Deposited TiN Nanorod Arrays. , 2019, , .		О
12	Extinction Properties of Obliquely Deposited TiN Nanorod Arrays. Coatings, 2018, 8, 465.	2.6	10
13	Metamaterial-inspired compact optical coating for broadband polarization beam splitting. Optics Express, 2018, 26, 811.	3.4	O
14	Design and Fabrication of a Narrow Bandpass Filter with Low Dependence on Angle of Incidence. Coatings, 2018, 8, 231.	2.6	14
15	Analysis of the passband and stopband of symmetrical metal-dielectric films. , 2018, , .		O
16	Capping metallic nanohelixes with SiO2 nanohelixes to enhance broadband and wide-angle light extinction. Optics Express, 2018, 26, 21510.	3.4	1
17	Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber. Scientific Reports, 2017, 7, 39791.	3.3	18
18	Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber. Scientific Reports, 2017, 7, 3076.	3.3	16

#	Article	IF	Citations
19	The Effect of Glancing Angle Deposition Conditions on the Morphology of a Silver Nanohelix Array. Coatings, 2017, 7, 140.	2.6	5
20	Obliquely Deposited Gold Nanohelices on Lithography-Free Prepared Nanoseeded Surfaces. Nanoscale Research Letters, 2017, 12, 485.	5.7	2
21	Photonic nanostructure design for high efficiency light absorber. , 2017, , .		O
22	Tunable tapered waveguide for efficient compression of light to graphene surface plasmons. Scientific Reports, 2016, 6, 28799.	3.3	6
23	Glancing angle deposited gold nanohelix arrays on smooth glass as three-dimensional SERS substrates. Optical Materials Express, 2016, 6, 697.	3.0	23
24	Z-shape nanostructured array deposited by substrate cooling method. Journal of Nanophotonics, 2016, 10, 033005.	1.0	3
25	Fabry-Perot based metal-dielectric multilayered filters and metamaterials. Optics Express, 2015, 23, 33008.	3.4	21
26	Self-Shadowing Deposited Pure Metal Nanohelix Arrays and SERS Application. Nanoscale Research Letters, 2015, 10, 498.	5.7	24
27	Optical coating on nano-optical antennas to enhance directional radiation. Journal of Nanophotonics, 2015, 9, 093595.	1.0	1
28	Aluminum-jointed silicon dioxide octagon nanohelix array with desired complex refractive index. Optics Letters, 2014, 39, 3386.	3.3	2
29	Strong light coupling effect for a glancing-deposited silver nanorod array in the Kretschmann configuration. Nanoscale Research Letters, 2014, 9, 567.	5.7	5
30	Deposition of Ta 2 O 5 upon silver nanorods as an ultra-thin light absorber. Thin Solid Films, 2014, 567, 38-46.	1.8	7
31	Effect of size of aluminum/silicon dioxide/aluminum nanosandwich films on their optical properties. Journal of Nanophotonics, 2014, 8, 083994.	1.0	0
32	Metal/dielectric/metal sandwich film for broadband reflection reduction. Scientific Reports, 2013, 3, 1672.	3.3	16
33	An interference coating of metamaterial as an ultrathin light absorber in the violet-to-infrared regime. Optics Express, 2013, 21, 10259.	3.4	9
34	Orthogonal polarization Mirau interferometer using reflective-type waveplate. Optics Letters, 2013, 38, 2502.	3.3	8
35	Design of an achromatic optical coating waveplate. Journal of Nanophotonics, 2012, 6, 061501.	1.0	2
36	Extended broadband achromatic reflective-type waveplate. Optics Letters, 2012, 37, 4296.	3.3	5

#	Article	IF	CITATIONS
37	Response to "Comment on â€~Silver/silicon dioxide/silver sandwich films in the blue-to-red spectral regime with negative-real refractive index'―[Appl. Phys. Lett. 101, 156101 (2012)]. Applied Physics Letters, 2012, 101, 156102.	3.3	1
38	Near-field simulation of obliquely deposited surface-enhanced Raman scattering substrates. Journal of Applied Physics, 2012, 112, .	2.5	11
39	Silver/silicon dioxide/silver sandwich films in the blue-to-red spectral regime with negative-real refractive index. Applied Physics Letters, 2011, 99, 181117.	3.3	12
40	Biologically inspired achromatic waveplates for visible light. Nature Communications, 2011, 2, 363.	12.8	40
41	Optical configuration for unpolarized ultra-long-range surface-plasmon-polariton waves. Applied Optics, 2011, 50, C154.	2.1	7
42	Deposited metamaterial thin film with negative refractive index and permeability in the visible regime. Optics Letters, 2011, 36, 1014.	3.3	21
43	Slanted S-shaped nano-columnar thin films for broadband and wide-angle polarization conversion. Optical Materials Express, 2011, 1, 525.	3.0	5
44	Commentary: Arbitrarily polarized long-range surface-plasmon-polariton waves. Journal of Nanophotonics, 2011, 5, 050304.	1.0	5
45	Using a single anisotropic thin film as a phase retarder for oblique incident wave. , $2011, , .$		0
46	Shape effect on the real parts ofÂequivalent permeability of chevron thin films of silver. Journal of Nanophotonics, 2011, 5, 051507.	1.0	1
47	Three-layered thin film system for broadband polarization conversion reflectance. Journal of Nanophotonics, 2011, 5, 051508.	1.0	1
48	Single dielectric columnar thin film as a broadband polarization conversion device. , 2010, , .		0
49	Single dielectric columnar thin film as a humidity sensor. Sensors and Actuators B: Chemical, 2010, 149, 67-70.	7.8	4
50	Shape effect on the negative equivalent permeabilities of chevronic thin films of silver. Proceedings of SPIE, 2010 , , .	0.8	0
51	Effects of the equivalent coupling layer on ultra-long-range surface-plasmon-polariton waves. Optics Express, 2010, 18, 7982.	3.4	1
52	Negative real parts of the equivalent permittivity, permeability, and refractive index of sculptured-nanorod arrays of silver. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 1078-1083.	2.1	12
53	Apply Cosine-Shape Nanostructured Thin Film in TE Mode Surface Plasmon Resonance. , 2010, , .		O
54	Negative Real Part of Equivalent Refractive Index of a Chevronic Nanostructured Film of Silver. , 2010, , .		0

#	Article	lF	Citations
55	Achromatic Polarization Switch by Using a Single Anisotropic Columnar Thin Film. , 2010, , .		О
56	Multilayer Design for P- and S-Polarized Long-Range Surface-Plasmon-Polariton Waves. , 2010, , .		O
57	Negative Real Parts of Equivalent Refractive Indices of Silver Nanorod Arrays with Different Thicknesses. , 2010, , .		0
58	Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence. Journal of Nanophotonics, 2009, 3, 033506.	1.0	38
59	Multilayered structures for p- and s-polarized long-range surface-plasmon-polariton propagation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26, 2600.	1.5	32
60	Vapor-deposited thin films with negative real refractive index in the visible regime. Optics Express, 2009, 17, 7784.	3.4	43
61	Negative refraction in a uniaxial absorbent dielectric material. European Journal of Physics, 2009, 30, 1381-1390.	0.6	20
62	Surface plasmon resonance via polarization conversion in a weak anisotropic thin film. Applied Physics Letters, 2009, 94, .	3.3	11
63	Backward wave phenomenon for light propagating through a silver nanorod array. , 2009, , .		0
64	Modulation of the polarization state of light using a weak anisotropic thin film. Optics Letters, 2008, 33, 467.	3.3	7
65	Anisotropic optical thin films finely sculptured by substrate sweep technology. Optics Express, 2008, 16, 5372.	3.4	17
66	Near-perfect modulator for polarization state of light. Journal of Nanophotonics, 2008, 2, 029504.	1.0	2
67	Optical constant determination of an anisotropic thin film via polarization conversion. Optics Express, 2007, 15, 4445.	3.4	30
68	Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature Nanotechnology, 2007, 2, 770-774.	31.5	1,022
69	Enhanced polarization conversion for an anisotropic thin film. Optics Communications, 2006, 265, 446-453.	2.1	8
70	Optical constant determination of an anisotropic thin film via surface plasmon resonance: analyzed by sensitivity calculation. Optics Communications, 2005, 244, 269-277.	2.1	18
71	Total reflection of waves propagating from a rare isotropic medium to a dense anisotropic medium. Optics Communications, 2004, 233, 271-275.	2.1	1
72	Experimental verification of backward-wave phenomenon by observation of reflection at angles larger than 90° in an anisotropic medium. Applied Physics Letters, 2003, 83, 3266-3268.	3.3	1

#	Article	IF	CITATIONS
73	Reflection and transmission phenomena of waves propagating between an isotropic medium and an arbitrarily oriented anisotropic medium. Optics Letters, 2001, 26, 190.	3.3	18