Barbara Lipinska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2160096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression of HTRA Genes and Its Association with Microsatellite Instability and Survival of Patients with Colorectal Cancer. International Journal of Molecular Sciences, 2020, 21, 3947.	1.8	5
2	Tumor Suppressors—HTRA Proteases and Interleukin-12—in Pediatric Asthma and Allergic Rhinitis Patients. Medicina (Lithuania), 2020, 56, 298.	0.8	4
3	The HtrA3 protease promotes drugâ€induced death of lung cancer cells by cleavage of the Xâ€linked inhibitor of apoptosis protein (<scp>XIAP</scp>). FEBS Journal, 2019, 286, 4579-4596.	2.2	18
4	HtrA4 Protease Promotes Chemotherapeutic-Dependent Cancer Cell Death. Cells, 2019, 8, 1112.	1.8	12
5	Cellular substrates and pro-apoptotic function of the human HtrA4 protease. Journal of Proteomics, 2019, 209, 103505.	1.2	7
6	Properties of the HtrA Protease From Bacterium Helicobacter pylori Whose Activity Is Indispensable for Growth Under Stress Conditions. Frontiers in Microbiology, 2019, 10, 961.	1.5	36
7	Proteomic analysis of protein homeostasis and aggregation. Journal of Proteomics, 2019, 198, 98-112.	1.2	30
8	Mast cells in mastocytosis and allergy – Important player in metabolic and immunological homeostasis. Advances in Medical Sciences, 2019, 64, 124-130.	0.9	13
9	Characterization of disulfide exchange between DsbA and HtrA proteins from Escherichia coli Acta Biochimica Polonica, 2019, 53, 585-589.	0.3	16
10	HtrA3 is a cellular partner of cytoskeleton proteins and TCP1α chaperonin. Journal of Proteomics, 2018, 177, 88-111.	1.2	17
11	Biochemical properties of the HtrA homolog from bacterium Stenotrophomonas maltophilia. International Journal of Biological Macromolecules, 2018, 109, 992-1005.	3.6	12
12	Immune response against HtrA proteases in children with cutaneous mastocytosis. Acta Biochimica Polonica, 2018, 65, 471-478.	0.3	2
13	Structural insights into the activation mechanisms of human HtrA serine proteases. Archives of Biochemistry and Biophysics, 2017, 621, 6-23.	1.4	53
14	Selection of Effective HTRA3 Activators Using Combinatorial Chemistry. ACS Combinatorial Science, 2017, 19, 565-573.	3.8	1
15	The role of the LB structural loop and its interactions with the PDZ domain of the human HtrA3 protease. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1141-1151.	1.1	9
16	Vitamin D status in patients with rheumatoid arthritis: a correlation analysis with disease activity and progression, as well as serum IL-6 levels. Acta Biochimica Polonica, 2017, 64, 667-670.	0.3	12
17	The Extracellular Bacterial HtrA Proteins as Potential Therapeutic Targets and Vaccine Candidates. Current Medicinal Chemistry, 2017, 24, 2174-2204.	1.2	22
18	Distinct 3D Architecture and Dynamics of the Human HtrA2(Omi) Protease and Its Mutated Variants. PLoS ONE, 2016, 11, e0161526.	1.1	14

BARBARA LIPINSKA

#	Article	IF	CITATIONS
19	The <scp>LD</scp> loop as an important structural element required for transmission of the allosteric signal in the HtrA (DegP) protease from <i>Escherichia coli</i> . FEBS Journal, 2016, 283, 3471-3487.	2.2	8
20	Intra- and intersubunit changes accompanying thermal activation of the HtrA2(Omi) protease homotrimer. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 283-296.	1.1	18
21	Analysis of the Link between the Redox State and Enzymatic Activity of the HtrA (DegP) Protein from Escherichia coli. PLoS ONE, 2015, 10, e0117413.	1.1	10
22	Structural and Functional Analysis of Human HtrA3 Protease and Its Subdomains. PLoS ONE, 2015, 10, e0131142.	1.1	35
23	Design and synthesis of new substrates of HtrA2 protease. Analytical Biochemistry, 2015, 475, 44-52.	1.1	4
24	The LA Loop as an Important Regulatory Element of the HtrA (DegP) Protease from Escherichia coli. Journal of Biological Chemistry, 2014, 289, 15880-15893.	1.6	22
25	Human Hsp40 proteins, DNAJA1 and DNAJA2, as potential targets of the immune response triggered by bacterial DnaJ in rheumatoid arthritis. Cell Stress and Chaperones, 2013, 18, 653-659.	1.2	26
26	Temperature-induced changes of HtrA2(Omi) protease activity and structure. Cell Stress and Chaperones, 2013, 18, 35-51.	1.2	33
27	Changes in expression of human serine protease HtrA1, HtrA2 and HtrA3 genes in benign and malignant thyroid tumors. Oncology Reports, 2012, 28, 1838-1844.	1.2	34
28	HtrA Protease Family as Therapeutic Targets. Current Pharmaceutical Design, 2012, 19, 977-1009.	0.9	116
29	Molecular characterization of the Corynebacterium pseudotuberculosis hsp60-hsp10 operon, and evaluation of the immune response and protective efficacy induced by hsp60 DNA vaccination in mice. BMC Research Notes, 2011, 4, 243.	0.6	22
30	Hsp40 proteins modulate humoral and cellular immune response in rheumatoid arthritis patients. Cell Stress and Chaperones, 2010, 15, 555-566.	1.2	31
31	HtrA proteins as targets in therapy of cancer and other diseases. Expert Opinion on Therapeutic Targets, 2010, 14, 665-679.	1.5	90
32	The role of the L2 loop in the regulation and maintaining the proteolytic activity of HtrA (DegP) protein from Escherichia coli. Archives of Biochemistry and Biophysics, 2010, 500, 123-130.	1.4	5
33	Cytokines of the Th1 and Th2 type in sera of rheumatoid arthritis patients; correlations with anti-Hsp40 immune response and diagnostic markers Acta Biochimica Polonica, 2010, 57, .	0.3	28
34	Cytokines of the Th1 and Th2 type in sera of rheumatoid arthritis patients; correlations with anti-Hsp40 immune response and diagnostic markers. Acta Biochimica Polonica, 2010, 57, 327-32.	0.3	17
35	Maspin overexpression correlates with positive response to primary chemotherapy in ovarian cancer patients. Gynecologic Oncology, 2009, 113, 91-98.	0.6	19
36	Temperature-induced conformational changes within the regulatory loops L1–L2–LA of the HtrA heat-shock protease from Escherichia coli. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1573-1582.	1.1	19

BARBARA LIPINSKA

#	Article	IF	CITATIONS
37	Expression of human HtrA1, HtrA2, HtrA3 and TGF-β1 genes in primary endometrial cancer. Oncology Reports, 2009, 21, 1529-37.	1.2	54
38	Changes in mRNA and protein levels of human HtrA1, HtrA2 and HtrA3 in ovarian cancer. Clinical Biochemistry, 2008, 41, 561-569.	0.8	66
39	The proteolytic activity of the HtrA (DegP) protein from Escherichia coli at low temperatures. Microbiology (United Kingdom), 2008, 154, 3649-3658.	0.7	37
40	Dynamics of Oxidative Damage at Early Stages of Estrogen-dependant Carcinogenesis. Advances in Experimental Medicine and Biology, 2008, 617, 609-615.	0.8	2
41	Changes in expression of serine proteases HtrA1 and HtrA2 during estrogen-induced oxidative stress and nephrocarcinogenesis in male Syrian hamster Acta Biochimica Polonica, 2008, 55, 9-20.	0.3	20
42	Changes in expression of serine proteases HtrA1 and HtrA2 during estrogen-induced oxidative stress and nephrocarcinogenesis in male Syrian hamster. Acta Biochimica Polonica, 2008, 55, 9-19.	0.3	8
43	Characterization of the chaperone-like activity of HtrA (DegP) protein from Escherichia coli under the conditions of heat shock. Archives of Biochemistry and Biophysics, 2007, 464, 80-89.	1.4	37
44	The DnaK chaperones from the archaeon Methanosarcina mazei and the bacterium Escherichia coli have different substrate specificities Acta Biochimica Polonica, 2007, 54, 509-522.	0.3	3
45	Structural basis of the interspecies interaction between the chaperone DnaK(Hsp70) and the co-chaperone GrpE of archaea and bacteria Acta Biochimica Polonica, 2007, 54, 245-252.	0.3	3
46	Dynamics of estrogen-induced oxidative stress Acta Biochimica Polonica, 2007, 54, 289-295.	0.3	4
47	Characterization of disulfide exchange between DsbA and HtrA proteins from Escherichia coli. Acta Biochimica Polonica, 2006, 53, 585-9.	0.3	9
48	Complementation studies of the DnaK–DnaJ–GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro. Archives of Microbiology, 2004, 182, 436-449.	1.0	11
49	Functional Similarities and Differences of an Archaeal Hsp70(DnaK) Stress Protein Compared with its Homologue from the Bacterium Escherichia coli. Journal of Molecular Biology, 2004, 336, 539-549.	2.0	30
50	Trimethoprim Induces Heat Shock Proteins and Protein Aggregation in E. coli Cells. Current Microbiology, 2003, 47, 286-289.	1.0	10
51	The N-terminal region of HtrA heat shock protease from Escherichia coli is essential for stabilization of HtrA primary structure and maintaining of its oligomeric structure. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1649, 171-182.	1.1	51
52	Cloning and characterization of the groE heat-shock operon of the marine bacterium Vibrio harveyi. Microbiology (United Kingdom), 2003, 149, 1483-1492.	0.7	8
53	Characterization of the anti-DnaJ monoclonal antibodies and their use to compare immunological properties of DnaJ and its human homologue HDJ-1. Cell Stress and Chaperones, 2003, 8, 8.	1.2	8
54	The Escherichia coli small heat-shock proteins IbpA and IbpB prevent the aggregation of endogenous proteins denatured in vivo during extreme heat shock. Microbiology (United Kingdom), 2002, 148, 1757-1765.	0.7	90

BARBARA LIPINSKA

#	Article	IF	CITATIONS
55	IbpA/B Small Heat-Shock Protein of Marine Bacterium Vibrio harveyi Binds to Proteins Aggregated in a Cell During Heat Shock. Marine Biotechnology, 2001, 3, 346-354.	1.1	9
56	Characterization of the groE heat shock operon of marine bacterium Vibrio harveyi. Biochemical Society Transactions, 2000, 28, A250-A250.	1.6	0
57	HtrA Heat Shock Protease Interacts with Phospholipid Membranes and Undergoes Conformational Changes. Journal of Biological Chemistry, 1997, 272, 8974-8982.	1.6	63
58	Characterization of heat-shock response of the marine bacterium Vibrio harveyi. Molecular Microbiology, 1995, 16, 801-811.	1.2	40
59	Comparison of the Structure of Wild-type HtrA Heat Shock Protease and Mutant HtrA Proteins. Journal of Biological Chemistry, 1995, 270, 11140-11146.	1.6	46
60	Comparison of the structure of wild-type HtrA heat shock protease and mutant HtrA proteins. A Fourier transform infrared spectroscopic study Journal of Biological Chemistry, 1995, 270, 31413.	1.6	6
61	Mutational analysis of the phage T4 morphogenetic 31 gene, whose product interacts with the Escherichia coli GroEL protein. Gene, 1990, 86, 19-25.	1.0	34
62	Sequence analysis and transcriptional regulation of theEscherichia coil grpEgene, encoding a heat shock protein. Nucleic Acids Research, 1988, 16, 7545-7562.	6.5	70
63	Sequence analysis and regulation of thehtrA gene ofEscherichin coli:a σ32-independent mechanism of heat-inducible transcription. Nucleic Acids Research, 1988, 16, 10053-10067.	6.5	255
64	Phage λ integration protein: Synthesis in λ-infected minicells and membrane affinity. FEBS Letters, 1980, 115, 281-284.	1.3	0
65	Synthesis and decay of λ DNA replication proteins in minicells. Biochemical and Biophysical Research Communications, 1980, 92, 120-126.	1.0	43
66	Synthesis of coliphage λ proteins in minicells as a possible tool for the identification of λ early gene products. Biochemical and Biophysical Research Communications, 1978, 82, 1202-1206.	1.0	4
67	Hyperglycemic hormone from the eyestalk of the shrimp Crangon crangon. General and Comparative Endocrinology, 1977, 33, 460-466.	0.8	13