Cristiane C Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2160044/publications.pdf

Version: 2024-02-01

48 papers

1,525 citations

430442 18 h-index 315357 38 g-index

53 all docs 53 docs citations

53 times ranked 2038 citing authors

#	Article	IF	Citations
1	Microbial genomic taxonomy. BMC Genomics, 2013, 14, 913.	1.2	316
2	Microbial taxonomy in the post-genomic era: Rebuilding from scratch?. Archives of Microbiology, 2015, 197, 359-370.	1.0	144
3	Environmental and Sanitary Conditions of Guanabara Bay, Rio de Janeiro. Frontiers in Microbiology, 2015, 6, 1232.	1.5	112
4	Ecogenomics and Taxonomy of Cyanobacteria Phylum. Frontiers in Microbiology, 2017, 8, 2132.	1.5	99
5	Genotype to phenotype: identification of diagnostic vibrio phenotypes using whole genome sequences. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 357-365.	0.8	81
6	Baseline Assessment of Mesophotic Reefs of the Vit \tilde{A}^3 ria-Trindade Seamount Chain Based on Water Quality, Microbial Diversity, Benthic Cover and Fish Biomass Data. PLoS ONE, 2015, 10, e0130084.	1.1	81
7	Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge <i>Arenosclera brasiliensis </i> i>. PeerJ, 2014, 2, e419.	0.9	78
8	Microbial processes driving coral reef organic carbon flow. FEMS Microbiology Reviews, 2017, 41, 575-595.	3.9	67
9	Identification of Vibrio cholerae and Vibrio mimicus by multilocus sequence analysis (MLSA). International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 617-621.	0.8	50
10	The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation. Frontiers in Microbiology, 2017, 8, 1019.	1.5	48
11	Advanced Microbial Taxonomy Combined with Genome-Based-Approaches Reveals that Vibrio astriarenae sp. nov., an Agarolytic Marine Bacterium, Forms a New Clade in Vibrionaceae. PLoS ONE, 2015, 10, e0136279.	1.1	47
12	Rhodoliths holobionts in a changing ocean: host-microbes interactions mediate coralline algae resilience under ocean acidification. BMC Genomics, 2018, 19, 701.	1.2	34
13	BaMBa: towards the integrated management of Brazilian marine environmental data. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav088.	1.4	30
14	Taxonomic and Functional Metagenomic Signature of Turfs in the Abrolhos Reef System (Brazil). PLoS ONE, 2016, 11, e0161168.	1.1	21
15	" Candidatus Colwellia aromaticivorans―sp. nov., " Candidatus Halocyntiibacter alkanivorans―sp. nov., and " Candidatus Ulvibacter alkanivorans―sp. nov. Genome Sequences. Microbiology Resource Announcements, 2019, 8, .	0.3	21
16	<i>Photobacterium sanctipauli</i> sp. nov. isolated from bleached <i>Madracis decactis</i> (Scleractinia) in the St Peter & Paul Archipelago, Mid-Atlantic Ridge, Brazil. Peerl, 2014, 2, e427.	0.9	21
17	Cloning and Functional Characterization of Cycloartenol Synthase from the Red Seaweed Laurencia dendroidea. PLoS ONE, 2016, 11, e0165954.	1.1	20
18	Vibrio ishigakensis sp. nov., in Halioticoli clade isolated from seawater in Okinawa coral reef area, Japan. Systematic and Applied Microbiology, 2016, 39, 330-335.	1.2	20

#	Article	IF	CITATIONS
19	Metagenomics sheds light on the metabolic repertoire of oil-biodegrading microbes of the South Atlantic Ocean. Environmental Pollution, 2019, 249, 295-304.	3.7	20
20	Microbial Community Profile and Water Quality in a Protected Area of the Caatinga Biome. PLoS ONE, 2016, 11, e0148296.	1.1	20
21	Diversity and ecological structure of vibrios in benthic and pelagic habitats along a latitudinal gradient in the Southwest Atlantic Ocean. PeerJ, 2015, 3, e741.	0.9	18
22	Quantitative Detection of Active Vibrios Associated with White Plague Disease in Mussismilia braziliensis Corals. Frontiers in Microbiology, 2017, 8, 2272.	1.5	16
23	Rapid isolation of culturable microalgae from a tropical shallow lake system. Journal of Applied Phycology, 2018, 30, 1807-1819.	1.5	16
24	Turbulence-driven shifts in holobionts and planktonic microbial assemblages in St. Peter and St. Paul Archipelago, Mid-Atlantic Ridge, Brazil. Frontiers in Microbiology, 2015, 6, 1038.	1.5	12
25	Unlocking the Genomic Taxonomy of the Prochlorococcus Collective. Microbial Ecology, 2020, 80, 546-558.	1.4	12
26	Mangrove microbiome reveals importance of sulfur metabolism in tropical coastal waters. Science of the Total Environment, 2022, 813, 151889.	3.9	12
27	Virioplankton Assemblage Structure in the Lower River and Ocean Continuum of the Amazon. MSphere, 2017, 2, .	1.3	10
28	Metagenomics of Coral Reefs Under Phase Shift and High Hydrodynamics. Frontiers in Microbiology, 2018, 9, 2203.	1.5	10
29	Genomic repertoire of Mameliella alba Ep20 associated with Symbiodinium from the endemic coral Mussismilia braziliensis. Symbiosis, 2020, 80, 53-60.	1.2	10
30	New tetrodotoxin analogs in Brazilian pufferfishes tissues and microbiome. Chemosphere, 2020, 242, 125211.	4.2	9
31	Conserved rhodolith microbiomes across environmental gradients of the Great Amazon Reef. Science of the Total Environment, 2021, 760, 143411.	3.9	9
32	Risk of Collapse in Water Quality in the Guandu River (Rio de Janeiro, Brazil). Microbial Ecology, 2021, , 1.	1.4	8
33	Insights from genome of Clostridium butyricum INCQS635 reveal mechanisms to convert complex sugars for biofuel production. Archives of Microbiology, 2016, 198, 115-127.	1.0	5
34	Breviolum and Cladocopium Are Dominant Among Symbiodiniaceae of the Coral Holobiont Madracis decactis. Microbial Ecology, 2021, , 1.	1.4	5
35	Glacial-interglacial transitions in microbiomes recorded in deep-sea sediments from the western equatorial Atlantic. Science of the Total Environment, 2020, 746, 140904.	3.9	4
36	Rapid screening of marine bacterial symbionts using MALDI-TOF MS. Archives of Microbiology, 2020, 202, 2329-2336.	1.0	4

#	Article	IF	CITATIONS
37	Ecogenomics of the Marine Benthic Filamentous Cyanobacterium Adonisia. Microbial Ecology, 2020, 80, 249-265.	1.4	4
38	Conserved Pigment Profiles in Phylogenetically Diverse Symbiotic Bacteria Associated with the Corals Montastraea cavernosa and Mussismilia braziliensis. Microbial Ecology, 2021, 81, 267-277.	1.4	4
39	Enterovibrio baiacu sp. nov Current Microbiology, 2020, 77, 154-157.	1.0	3
40	Oil leakage induces changes in microbiomes of deep-sea sediments of Campos Basin (Brazil). Science of the Total Environment, 2020, 740, 139556.	3.9	3
41	Vibrio tetraodonis sp. nov.: genomic insights on the secondary metabolites repertoire. Archives of Microbiology, 2021, 203, 399-404.	1.0	3
42	Environmental modulation of the proteomic profiles from closely phylogenetically related populations of the red seaweed <i>Plocamium brasiliense</i> . PeerJ, 2019, 7, e6469.	0.9	3
43	Halomonas coralii sp. nov. Isolated from Mussismilia braziliensis. Current Microbiology, 2019, 76, 678-680.	1.0	2
44	Genome sequence of Shewanella corallii strain A687 isolated from pufferfish (Sphoeroides spengleri). Genetics and Molecular Biology, 2020, 43, e20180314.	0.6	2
45	Insights into the genomic repertoire of Aquimarina litoralis CCMR20, a symbiont of coral Mussismilia braziliensis. Archives of Microbiology, 2021, 203, 2743-2746.	1.0	2
46	Genome sequence of Vibrio fluvialis 362.3 isolated from coral Mussismilia braziliensis reveals genes related to marine environment adaptation. Archives of Microbiology, 2021, 203, 3683-3686.	1.0	0
47	Transcriptome of the coral Mussismilia braziliensis symbiont Sargassococcus simulans. Marine Genomics, 2022, 61, 100912.	0.4	0
48	Letter to Microbial Ecology. Microbial Ecology, 2022, , 1.	1.4	0