Patrick H Lizotte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2159860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neoadjuvant and Adjuvant Nivolumab and Lirilumab in Patients with Recurrent, Resectable Squamous Cell Carcinoma of the Head and Neck. Clinical Cancer Research, 2022, 28, 468-478.	3.2	45
2	Activation of Tumor-Cell STING Primes NK-Cell Therapy. Cancer Immunology Research, 2022, 10, 947-961.	1.6	22
3	STINC activation promotes robust immune response and NK cell–mediated tumor regression in glioblastoma models. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	44
4	Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade. Journal of Clinical Investigation, 2021, 131, .	3.9	35
5	Intrinsic Immunogenicity of Small Cell Lung Carcinoma Revealed by Its Cellular Plasticity. Cancer Discovery, 2021, 11, 1952-1969.	7.7	87
6	Neoadjuvant and adjuvant nivolumab and lirilumab in patients with recurrent, resectable squamous cell carcinoma of the head and neck Journal of Clinical Oncology, 2021, 39, 6053-6053.	0.8	7
7	Acute pharmacological degradation of Helios destabilizes regulatory T cells. Nature Chemical Biology, 2021, 17, 711-717.	3.9	52
8	Selective Histone Deacetylase Inhibitor ACY-241 (Citarinostat) Plus Nivolumab in Advanced Non-Small Cell Lung Cancer: Results From a Phase Ib Study. Frontiers in Oncology, 2021, 11, 696512.	1.3	22
9	Generation of Genetically Engineered Mouse Lung Organoid Models for Squamous Cell Lung Cancers Allows for the Study of Combinatorial Immunotherapy. Clinical Cancer Research, 2020, 26, 3431-3442.	3.2	41
10	Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway. Cancer Cell, 2020, 37, 104-122.e12.	7.7	267
11	Abstract 5543: TAK1 deficiency in tumor cells enhances sensitivity to CTL-mediated killing via TNF-α. Cancer Research, 2020, 80, 5543-5543.	0.4	2
12	Abstract PR06: Dissecting mechanisms of replication fork stabilization in patient-derived high-grade serous organoid cultures and their impact on therapeutic sensitivity and the immune-tumor interaction. , 2020, , .		0
13	248â€Immunotherapy persister cells uncovered by dynamic single-cell RNA-sequencing. , 2020, , .		Ο
14	Phase 2 study of tremelimumab plus durvalumab for previously-treated malignant pleural mesothelioma (MPM) Journal of Clinical Oncology, 2019, 37, 8549-8549.	0.8	9
15	Abstract 1483: Ex vivo single cell RNA-sequencing of tumor derived organotypic spheroids identifies a unique mesenchymal resistance program to PD-1 blockade. , 2019, , .		0
16	Abstract 368A: Functional assessment of DNA damage repair defects and the anti-tumor immune response in high grade serous ovarian cancers using patient-derived organoids. , 2019, , .		0
17	False-Positive Plasma Genotyping Due to Clonal Hematopoiesis. Clinical Cancer Research, 2018, 24, 4437-4443.	3.2	321
18	<i>Ex Vivo</i> Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discovery, 2018, 8, 196-215.	7.7	392

PATRICK H LIZOTTE

#	Article	IF	CITATIONS
19	CDK4/6 Inhibition Augments Antitumor Immunity by Enhancing T-cell Activation. Cancer Discovery, 2018, 8, 216-233.	7.7	503
20	Frameshift events predict antiâ \in "PD-1/L1 response in head and neck cancer. JCI Insight, 2018, 3, .	2.3	190
21	TSC2-deficient tumors have evidence of T cell exhaustion and respond to anti–PD-1/anti–CTLA-4 immunotherapy. JCI Insight, 2018, 3, .	2.3	49
22	A High-Throughput Immune-Oncology Screen Identifies EGFR Inhibitors as Potent Enhancers of Antigen-Specific Cytotoxic T-lymphocyte Tumor Cell Killing. Cancer Immunology Research, 2018, 6, 1511-1523.	1.6	59
23	Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma. Cell, 2018, 175, 998-1013.e20.	13.5	1,260
24	Abstract 4935: High-throughput immune-oncology screen identifies EGFR inhibitors as potent enhancers of CTL antigen-specific tumor cell killing. , 2018, , .		3
25	Abstract 1686: TSC2 enhances antitumor immunity and potentiates PD-1 and CTLA-4 blockade. , 2018, , .		0
26	Defining an inflamed tumor immunophenotype in recurrent, metastatic squamous cell carcinoma of the head and neck. Oral Oncology, 2017, 67, 61-69.	0.8	42
27	Synergistic Immunostimulatory Effects and Therapeutic Benefit of Combined Histone Deacetylase and Bromodomain Inhibition in Non–Small Cell Lung Cancer. Cancer Discovery, 2017, 7, 852-867.	7.7	132
28	Effect of FAK inhibitor defactinib on tumor immune changes and tumor reductions in a phase II window of opportunity study in malignant pleural mesothelioma (MPM) Journal of Clinical Oncology, 2017, 35, 8555-8555.	0.8	10
29	Abstract LB-218: Validation of a novel microfluidic device for screening of immune checkpoint inhibitors using 3D organotypic tumor spheroids. Cancer Research, 2017, 77, LB-218-LB-218.	0.4	1
30	Abstract 3682: Synergistic immunostimulatory effects and therapeutic benefit of combined histone deacetylase and bromodomain inhibition in non-small cell lung cancer. , 2017, , .		0
31	Cytotoxic T Cells in PD-L1–Positive Malignant Pleural Mesotheliomas Are Counterbalanced by Distinct Immunosuppressive Factors. Cancer Immunology Research, 2016, 4, 1038-1048.	1.6	62
32	Fine needle aspirate flow cytometric phenotyping characterizes immunosuppressive nature of the mesothelioma microenvironment. Scientific Reports, 2016, 6, 31745.	1.6	22
33	In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nature Nanotechnology, 2016, 11, 295-303.	15.6	392
34	Abstract A132: Multi-parametric profiling of non-small cell lung cancers reveals distinct immunophenotypes. , 2016, , .		7
35	Multiparametric profiling of non–small-cell lung cancers reveals distinct immunophenotypes. JCI Insight, 2016, 1, e89014.	2.3	110
36	Abstract A140: Viral-like nanoparticles for tumor immunotherapy by in situ vaccination mediate potent antitumor immunity. , 2016, , .		0

PATRICK H LIZOTTE

#	Article	IF	CITATIONS
37	Abstract A68: Local tumor treatments to simulate systemic antitumor immune responses. , 2015, , .		0
38	Attenuated <i>Listeria monocytogenes</i> reprograms M2-polarized tumor-associated macrophages in ovarian cancer leading to iNOS-mediated tumor cell lysis. OncoImmunology, 2014, 3, e28926.	2.1	66
39	Stimulating antitumor immunity with nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 496-505.	3.3	21
40	Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Scientific Data, 2014, 1, 140035.	2.4	328
41	Avirulent <i>Toxoplasma gondii</i> Generates Therapeutic Antitumor Immunity by Reversing Immunosuppression in the Ovarian Cancer Microenvironment. Cancer Research, 2013, 73, 3842-3851.	0.4	86
42	Immune-Mediated Regression of Established B16F10 Melanoma by Intratumoral Injection of Attenuated <i>Toxoplasma gondii</i> Protects against Rechallenge. Journal of Immunology, 2013, 190, 469-478.	0.4	98
43	SQSTM1 Is a Pathogenic Target of 5q Copy Number Gains in Kidney Cancer. Cancer Cell, 2013, 24, 738-750.	7.7	135
44	Abstract B21: Immune-based treatment of ovarian cancer in a mouse model with attenuated Toxoplasma gondii , 2013, , .		0
45	Abstract A36: Treatment of established dermal murine B16F10 melanoma with an attenuatedToxoplasma gondiieliminates the treated tumor and stimulates systemic antitumor immunity , 2013, , .		0
46	Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12372-12377.	3.3	383