Luis Ignacio Toledo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2159855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acute hydroxyurea-induced replication blockade results in replisome components disengagement from nascent DNA without causing fork collapse. Cellular and Molecular Life Sciences, 2020, 77, 735-749.	5.4	13
2	Physiological Tolerance to ssDNA Enables Strand Uncoupling during DNA Replication. Cell Reports, 2020, 30, 2416-2429.e7.	6.4	45
3	Replication Catastrophe: When a Checkpoint Fails because of Exhaustion. Molecular Cell, 2017, 66, 735-749.	9.7	165
4	Activation of the ATR kinase by the RPA-binding protein ETAA1. Nature Cell Biology, 2016, 18, 1196-1207.	10.3	208
5	The NBS1–Treacle complex controls ribosomal RNA transcription in response to DNA damage. Nature Cell Biology, 2014, 16, 792-803.	10.3	127
6	ATR Prohibits Replication Catastrophe by Preventing Global Exhaustion of RPA. Cell, 2013, 155, 1088-1103.	28.9	714
7	The Chromatin Scaffold Protein SAFB1 Renders Chromatin Permissive for DNA Damage Signaling. Molecular Cell, 2013, 52, 206-220.	9.7	57
8	TRIP12 and UBR5 Suppress Spreading of Chromatin Ubiquitylation at Damaged Chromosomes. Cell, 2012, 150, 697-709.	28.9	282
9	Targeting ATR and Chk1 kinases for cancer treatment: A new model for new (and old) drugs. Molecular Oncology, 2011, 5, 368-373.	4.6	160
10	Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nature Structural and Molecular Biology, 2011, 18, 1331-1335.	8.2	342
11	A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nature Structural and Molecular Biology, 2011, 18, 721-727.	8.2	411
12	CGK733 does not inhibit ATM or ATR kinase activity in H460 human lung cancer cells. DNA Repair, 2011, 10, 1000-1001.	2.8	12
13	ATR signaling can drive cells into senescence in the absence of DNA breaks. Genes and Development, 2008, 22, 297-302.	5.9	149
14	ATM regulates ATR chromatin loading in response to DNA double-strand breaks. Journal of Experimental Medicine, 2006, 203, 297-303.	8.5	208