Mark E Conrad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2159733/publications.pdf

Version: 2024-02-01

102 papers

6,075 citations

71102 41 h-index 74163 75 g-index

104 all docs

104 docs citations

times ranked

104

6652 citing authors

#	Article	IF	Citations
1	Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria. Science, 2010, 330, 204-208.	12.6	1,109
2	Succession of Hydrocarbon-Degrading Bacteria in the Aftermath of the <i>Deepwater Horizon</i> Oil Spill in the Gulf of Mexico. Environmental Science &	10.0	344
3	Deepâ€sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environmental Microbiology, 2012, 14, 2405-2416.	3 . 8	275
4	Subsurface flow paths in a steep, unchanneled catchment. Water Resources Research, 1997, 33, 2637-2653.	4.2	233
5	Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria. Geochimica Et Cosmochimica Acta, 2006, 70, 1739-1752.	3.9	175
6	Identification and characterization of high methane-emitting abandoned oil and gas wells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13636-13641.	7.1	143
7	Stable Carbon Isotope Fractionation during Enhanced In Situ Bioremediation of Trichloroethene. Environmental Science & Technology, 2002, 36, 2262-2268.	10.0	129
8	Oxygen effects on methane production and oxidation in humid tropical forest soils. Global Change Biology, 2005, 11, 1283-1297.	9 . 5	122
9	Distribution of hydrocarbons released during the 2010 MC252 oil spill in deep offshore waters. Environmental Pollution, 2013, 173, 224-230.	7.5	113
10	Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 79-89.	1.4	112
11	Incomplete Wood–Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring <i>Dehalococcoides mccartyi⟨i⟩. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6419-6424.</i>	7.1	104
12	Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment. Frontiers in Microbiology, 2014, 5, 315.	3 . 5	103
13	Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability. Geochimica Et Cosmochimica Acta, 2016, 179, 217-241.	3.9	102
14	Water Table Dynamics and Biogeochemical Cycling in a Shallow, Variably-Saturated Floodplain. Environmental Science & Environme	10.0	100
15	Stable isotope and salinity systematics in estuarine waters and carbonates: San Francisco Bay. Geochimica Et Cosmochimica Acta, 1996, 60, 455-467.	3.9	88
16	Carbon-Isotope, Diatom, and Pollen Evidence for Late Holocene Salinity Change in a Brackish Marsh in the San Francisco Estuary. Quaternary Research, 2001, 55, 66-76.	1.7	88
17	In Situ Long-Term Reductive Bioimmobilization of Cr(VI) in Groundwater Using Hydrogen Release Compound. Environmental Science & Technology, 2008, 42, 8478-8485.	10.0	86
18	Approaches to modeling coupled thermal, hydrological, and chemical processes in the drift scale heater test at Yucca Mountain. International Journal of Rock Mechanics and Minings Sciences, 2005, 42, 698-719.	5.8	82

#	Article	IF	CITATIONS
19	Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment. Biogeochemistry, 2016, 127, 367-396.	3.5	76
20	A 2000 yr record of Sacramento–San Joaquin river inflow to San Francisco Bay estuary, California. Geology, 1996, 24, 331.	4.4	75
21	Combined 14C and $\hat{1}$ 13C Monitoring of in SituBiodegradation of Petroleum Hydrocarbons. Environmental Science & 2 amp; Technology, 1997, 31, 1463-1469.	10.0	73
22	A large column analog experiment of stable isotope variations during reactive transport: I. A comprehensive model of sulfur cycling and \hat{l} 34S fractionation. Geochimica Et Cosmochimica Acta, 2014, 124, 366-393.	3.9	71
23	Control of sulfidogenesis through bioâ€oxidation of <scp><scp>H₂S</scp></scp> coupled to (per)chlorate reduction. Environmental Microbiology Reports, 2014, 6, 558-564.	2.4	69
24	Gut anatomical properties and microbial functional assembly promote lignocellulose deconstruction and colony subsistence of a wood-feeding beetle. Nature Microbiology, 2019, 4, 864-875.	13.3	68
25	Timing the Onset of Sulfate Reduction over Multiple Subsurface Acetate Amendments by Measurement and Modeling of Sulfur Isotope Fractionation. Environmental Science & Environ	10.0	66
26	Mechanism of H $\langle sub \rangle 2 \langle sub \rangle$ S Oxidation by the Dissimilatory Perchlorate-Reducing Microorganism $\langle i \rangle$ Azospira suillum $\langle i \rangle$ PS. MBio, 2017, 8, .	4.1	66
27	Stable Carbon Isotope Fractionation during Aerobic Biodegradation of Chlorinated Ethenes. Environmental Science & Environmental Science & Environmenta	10.0	65
28	Stable Carbon Isotope Fractionation of Chloroethenes by Dehalorespiring Isolates. Environmental Science & Environmental Scienc	10.0	61
29	Reoxidation of Chromium(III) Products Formed under Different Biogeochemical Regimes. Environmental Science & Technology, 2017, 51, 4918-4927.	10.0	60
30	Streamflow generation from snowmelt in semiâ€arid, seasonally snowâ€covered, forested catchments, Valles Caldera, New Mexico. Water Resources Research, 2008, 44, .	4.2	56
31	Field Evidence for Co-Metabolism of Trichloroethene Stimulated by Addition of Electron Donor to Groundwater. Environmental Science & Environmental Sci	10.0	55
32	Oxygen Isotope Zoning in Garnet. Science, 1991, 254, 403-406.	12.6	54
33	Stable isotope record of late Holocene salinity and river discharge in San Francisco Bay, California. Earth and Planetary Science Letters, 1996, 141, 237-247.	4.4	52
34	Microbial community response to addition of polylactate compounds to stimulate hexavalent chromium reduction in groundwater. Chemosphere, 2011, 85, 660-665.	8.2	50
35	Oxygen-isotope zoning in garnet: A record of volatile transport. Geochimica Et Cosmochimica Acta, 1993, 57, 2613-2629.	3.9	47
36	Identifying the Sources of Subsurface Contamination at the Hanford Site in Washington using High-Precision Uranium Isotopic Measurements. Environmental Science & Environmental Science & 2004, 38, 3330-3337.	10.0	46

#	Article	IF	CITATIONS
37	Tracking Sources of Unsaturated Zone and Groundwater Nitrate Contamination Using Nitrogen and Oxygen Stable Isotopes at the Hanford Site, Washington. Environmental Science &	10.0	45
38	Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra. Global Change Biology, 2016, 22, 3487-3502.	9.5	45
39	Reactive Transport Model of Sulfur Cycling as Impacted by Perchlorate and Nitrate Treatments. Environmental Science & Environmental Science & Environm	10.0	45
40	Evaporation Effects on Oxygen and Hydrogen Isotopes in Deep Vadose Zone Pore Fluids at Hanford, Washington. Vadose Zone Journal, 2004, 3, 220-232.	2.2	44
41	Geophysical Monitoring of Hydrological and Biogeochemical Transformations Associated with Cr(VI) Bioremediation. Environmental Science & Environmental	10.0	44
42	Hydrogeology of the Hawaii Scientific Drilling Project borehole KP-1: 2. Groundwater geochemistry and regional flow patterns. Journal of Geophysical Research, 1996, 101, 11683-11694.	3.3	42
43	Rateâ€limited U(VI) desorption during a smallâ€scale tracer test in a heterogeneous uraniumâ€contaminated aquifer. Water Resources Research, 2012, 48, .	4.2	42
44	Multiphase Reactive Transport Modeling of Seasonal Infiltration Events and Stable Isotope Fractionation in Unsaturated Zone Pore Water and Vapor at the Hanford Site. Vadose Zone Journal, 2004, 3, 775-785.	2.2	41
45	Large carbon isotope variability during methanogenesis under alkaline conditions. Geochimica Et Cosmochimica Acta, 2018, 237, 18-31.	3.9	39
46	Temperature and injection water source influence microbial community structure in four Alaskan North Slope hydrocarbon reservoirs. Frontiers in Microbiology, 2014, 5, 409.	3.5	37
47	Vadose zone infiltration rate at Hanford, Washington, inferred from Sr isotope measurements. Water Resources Research, 2003, 39, .	4.2	36
48	Phylogenetic Microarray Analysis of a Microbial Community Performing Reductive Dechlorination at a TCE-Contaminated Site. Environmental Science & Environmental Science & 2012, 46, 1044-1054.	10.0	36
49	Stable isotopes, Sr/Ca, and Mg/Ca in biogenic carbonates from Petaluma Marsh, northern California, USA. Geochimica Et Cosmochimica Acta, 1998, 62, 3229-3237.	3.9	34
50	Modally-Graded Rhythmic Layering in the Skaergaard Intrusion. Journal of Petrology, 1989, 30, 251-269.	2.8	33
51	Dissolution rates and vadose zone drainage from strontium isotope measurements of groundwater in the Pasco Basin, WA unconfined aquifer. Journal of Hydrology, 2006, 321, 39-58.	5.4	33
52	Attenuating Sulfidogenesis in a Soured Continuous Flow Column System With Perchlorate Treatment. Frontiers in Microbiology, 2018, 9, 1575.	3.5	32
53	Flow dynamics and potential for biodegradation of organic contaminants in fractured rock vadose zones. Journal of Contaminant Hydrology, 2000, 43, 63-90.	3.3	30
54	Proteomic and targeted qPCR analyses of subsurface microbial communities for presence of methane monooxygenase. Biodegradation, 2011, 22, 1045-1059.	3.0	30

#	Article	IF	CITATIONS
55	Pathways and transformations of dissolved methane and dissolved inorganic carbon in Arctic tundra watersheds: Evidence from analysis of stable isotopes. Global Biogeochemical Cycles, 2015, 29, 1893-1910.	4.9	30
56	Isotopic evidence for biological controls on migration of petroleum hydrocarbons. Organic Geochemistry, 1999, 30, 843-859.	1.8	29
57	Assessment of in-situ bioremediation at a refinery waste-contaminated site and an aviation gasoline contaminated site. Biodegradation, 2002, 13, 79-90.	3.0	29
58	Isotopic insights into microbial sulfur cycling in oil reservoirs. Frontiers in Microbiology, 2014, 5, 480.	3.5	29
59	Isotopic evidence for the infiltration of mantle and metamorphic CO2–H2O fluids from below in faulted rocks from the San Andreas Fault system. Chemical Geology, 2011, 281, 242-252.	3.3	28
60	Microbial Community Responses to Organophosphate Substrate Additions in Contaminated Subsurface Sediments. PLoS ONE, 2014, 9, e100383.	2.5	28
61	Automated analysis of 13C/12C ratios in CO2 and dissolved inorganic carbon for ecological and environmental applications. Rapid Communications in Mass Spectrometry, 2003, 17, 2675-2682.	1.5	26
62	Cluster analysis as a tool for evaluating the exploration potential of Known Geothermal Resource Areas. Geothermics, 2018, 72, 358-370.	3.4	26
63	Seasonally-Induced Fluctuations in Microbial Production and Consumption of Methane during Bioremediation of Aged Subsurface Refinery Contamination. Environmental Science & Echnology, 1999, 33, 4061-4068.	10.0	25
64	Depth―and Timeâ€Resolved Distributions of Snowmeltâ€Driven Hillslope Subsurface Flow and Transport and Their Contributions to Surface Waters. Water Resources Research, 2019, 55, 9474-9499.	4.2	25
65	Deep Vadose Zone Respiration Contributions to Carbon Dioxide Fluxes from a Semiarid Floodplain. Vadose Zone Journal, 2016, 15, 1-14.	2.2	24
66	Experimental and theoretical determinations of hydrogen isotopic equilibrium in the system CH4H2H2O from 3 to 200 °C. Geochimica Et Cosmochimica Acta, 2021, 314, 223-269.	3.9	23
67	Laser-based, in situ measurements of fine-scale variations in the δ180 values of hydrothermal quartz. Geology, 1992, 20, 812.	4.4	22
68	Stable carbon isotope composition of atmospheric methyl bromide. Geophysical Research Letters, 2004, 31, .	4.0	22
69	Sulfur Isotopes as Indicators of Amended Bacterial Sulfate Reduction Processes Influencing Field Scale Uranium Bioremediation. Environmental Science & Environmental Science & 2008, 42, 7842-7849.	10.0	21
70	Precipitation induced stream flow: An event based chemical and isotopic study of a small stream in the Great Plains region of the USA. Journal of Hydrology, 2006, 330, 470-480.	5.4	20
71	Carbon isotope fractionation by methane-oxidizing bacteria in tropical rain forest soils. Journal of Geophysical Research, 2006, 111 , n/a-n/a.	3.3	19
72	Geochemical, Biological, and Clumped Isotopologue Evidence for Substantial Microbial Methane Production Under Carbon Limitation in Serpentinites of the Samail Ophiolite, Oman. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006025.	3.0	19

#	Article	IF	Citations
73	Stable Isotope Evolution of Volcanic Ash Layers during Diagenesis of the Miocene Monterey Formation, California. Clays and Clay Minerals, 1999, 47, 84-95.	1.3	18
74	Effects of Varying Growth Conditions on Stable Carbon Isotope Fractionation of Trichloroethene (TCE) by <i>tce</i> A-containing <i>Dehalococcoides mccartyi</i> strains. Environmental Science & Eamp; Technology, 2013, 47, 12342-12350.	10.0	18
75	Bedrock weathering contributes to subsurface reactive nitrogen and nitrous oxide emissions. Nature Geoscience, 2021, 14, 217-224.	12.9	18
76	Evaporation Effects on Oxygen and Hydrogen Isotopes in Deep Vadose Zone Pore Fluids at Hanford, Washington. Vadose Zone Journal, 2004, 3, 220-232.	2.2	17
77	A large column analog experiment of stable isotope variations during reactive transport: II. Carbon mass balance, microbial community structure and predation. Geochimica Et Cosmochimica Acta, 2014, 124, 394-409.	3.9	17
78	Evolution of an Au-Ag-producing hydrothermal system; the Tayoltita Mine, Durango, Mexico. Economic Geology, 1992, 87, 1451-1474.	3.8	15
79	Kinetics of D/H isotope fractionation between molecular hydrogen and water. Geochimica Et Cosmochimica Acta, 2018, 242, 191-212.	3.9	15
80	Deep Unsaturated Zone Contributions to Carbon Cycling in Semiarid Environments. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3045-3054.	3.0	15
81	Modeling the Impact of Riparian Hollows on River Corridor Nitrogen Exports. Frontiers in Water, 2021, 3, .	2.3	15
82	Shale as a Source of Organic Carbon in Floodplain Sediments of a Mountainous Watershed. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005419.	3.0	14
83	Multiphase Reactive Transport Modeling of Seasonal Infiltration Events and Stable Isotope Fractionation in Unsaturated Zone Pore Water and Vapor at the Hanford Site. Vadose Zone Journal, 2004, 3, 775-785.	2.2	12
84	Experimental determination of hydrogen isotope exchange rates between methane and water under hydrothermal conditions. Geochimica Et Cosmochimica Acta, 2022, 329, 231-255.	3.9	10
85	The relative permeabilities of quartzites and schists during active metamorphism at midâ€crustal levels. Geophysical Research Letters, 1991, 18, 959-962.	4.0	9
86	The Doe Water Cycle Pilot Study. Bulletin of the American Meteorological Society, 2005, 86, 359-374.	3.3	9
87	Reply to "Methane origin in the Samail ophiolite: Comment on â€~Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability'―[Geochim. Cosmochim. Acta 179 (2016) 217–241]. Geochimica Et Cosmochimica Acta, 2017, 197, 471-473.	3.9	9
88	Fluid flow and water-rock interaction in the East Rift Zone of Kilauea Volcano, Hawaii. Journal of Geophysical Research, 1997, 102, 15021-15037.	3.3	8
89	Isotopic Studies of Contaminant Transport at the Hanford Site, Washington. Vadose Zone Journal, 2007, 6, 1018-1030.	2.2	8
90	Use of carbon stable isotopes to monitor biostimulation and electron donor fate in chromium-contaminated groundwater. Chemosphere, 2019, 235, 440-446.	8.2	7

#	Article	IF	CITATIONS
91	Field Evidence for Strong Chemical Separation of Contaminants in the Hanford Vadose Zone. Vadose Zone Journal, 2007, 6, 1031-1041.	2.2	7
92	Geochemical Controls on Release and Speciation of Fe(II) and Mn(II) From Hyporheic Sediments of East River, Colorado. Frontiers in Water, 2020, 2, .	2.3	7
93	Oxygen Isotope Compositions of Mixed-Layer Serpentine-Chlorite and Illite-Smectite in the Tuscaloosa Formation (U.S. Gulf Coast): Implications for Pore Fluids and Mineralogic Reactions. Clays and Clay Minerals, 1998, 46, 357-368.	1.3	6
94	Evidence for Microbial Mediated NO3 \hat{a} Cycling Within Floodplain Sediments During Groundwater Fluctuations. Frontiers in Earth Science, 2019, 7, .	1.8	6
95	Microbial Sulfate Reduction and Perchlorate Inhibition in a Novel Mesoscale Tank Experiment. Energy & Lamp; Fuels, 2018, 32, 12049-12065.	5.1	5
96	Carbon Isotopic Evidence for Biodegradation of Organic Contaminants in the Shallow Vadose Zone of the Radioactive Waste Management Complex. Vadose Zone Journal, 2004, 3, 143-153.	2.2	5
97	Sulfur Biogeochemical Cycling and Redox Dynamics in a Shaleâ€Dominated Mountainous Watershed. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	5
98	Isotopic Tracking of Hanford 300 Area Derived Uranium in the Columbia River. Environmental Science & Environmental & Environme	10.0	4
99	Evaporation Effects on Oxygen and Hydrogen Isotopes in Deep Vadose Zone Pore Fluids at Hanford, Washington. Vadose Zone Journal, 2004, 3, 220.	2.2	4
100	The relation between widespread 18 O depletion patterns and precious metal mineralization in the Tayoltita Mine, Durango, Mexico. Economic Geology, 1995, 90, 322-342.	3.8	3
101	Method for Controlling Temperature Profiles and Water Table Depths in Laboratory Sediment Columns. Vadose Zone Journal, 2018, 17, 1-7.	2.2	2
102	Carbon Isotopic Evidence for Biodegradation of Organic Contaminants in the Shallow Vadose Zone of the Radioactive Waste Management Complex. Vadose Zone Journal, 2004, 3, 143-153.	2.2	2