Hiroyuki Sorimachi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2159712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and physiological function of calpains. Biochemical Journal, 1997, 328, 721-732.	1.7	674
2	Calpain: new perspectives in molecular diversity and physiologicalâ€pathological involvement. FASEB Journal, 1994, 8, 814-822.	0.2	641
3	Structure, Activation, and Biology of Calpain. Diabetes, 2004, 53, S12-S18.	0.3	357
4	Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. Journal of Molecular Biology, 2001, 306, 717-726.	2.0	350
5	The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 588-592.	3.3	343
6	Muscle assembly: a titanic achievement?. Current Opinion in Cell Biology, 1999, 11, 18-25.	2.6	296
7	Calpains — An elaborate proteolytic system. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 224-236.	1.1	289
8	The NH2 Terminus of Titin Spans the Z-Disc: Its Interaction with a Novel 19-kD Ligand (T-cap) Is Required for Sarcomeric Integrity. Journal of Cell Biology, 1998, 143, 1013-1027.	2.3	285
9	Muscle-specific Calpain, p94, Responsible for Limb Girdle Muscular Dystrophy Type 2A, Associates with Connectin through IS2, a p94-specific Sequence. Journal of Biological Chemistry, 1995, 270, 31158-31162.	1.6	272
10	Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and mu-types. Specific expression of the mRNA in skeletal muscle. Journal of Biological Chemistry, 1989, 264, 20106-11.	1.6	259
11	Myopalladin, a Novel 145-Kilodalton Sarcomeric Protein with Multiple Roles in Z-Disc and I-Band Protein Assemblies. Journal of Cell Biology, 2001, 153, 413-428.	2.3	250
12	The Structure of Calpain. Journal of Biochemistry, 2001, 129, 653-664.	0.9	249
13	Membrane-anchored metalloprotease MDC9 has an α-secretase activity responsible for processing the amyloid precursor protein. Biochemical Journal, 1999, 343, 371-375.	1.7	242
14	A Novel Ligand for CD44 Is Serglycin, a Hematopoietic Cell Lineage-specific Proteoglycan. Journal of Biological Chemistry, 1995, 270, 7437-7444.	1.6	229
15	Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. Journal of Cell Biology, 2002, 157, 125-136.	2.3	222
16	Calpain research for drug discovery: challenges and potential. Nature Reviews Drug Discovery, 2016, 15, 854-876.	21.5	216
17	Tissue-specific expression and α-actinin binding properties of the Z-disc titin: implications for the nature of vertebrate Z-discs. Journal of Molecular Biology, 1997, 270, 688-695.	2.0	195

18 New era of calpain research. FEBS Letters, 1994, 343, 1-5.

1.3 175

#	Article	IF	CITATIONS
19	Loss of Calpain 3 Proteolytic Activity Leads to Muscular Dystrophy and to Apoptosis-Associated lκbα/Nuclear Factor κb Pathway Perturbation in Mice. Journal of Cell Biology, 2000, 151, 1583-1590.	2.3	158
20	Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB Journal, 1994, 8, 814-22.	0.2	157
21	A novel aspect of calpain activation. FEBS Letters, 1998, 433, 1-4.	1.3	152
22	Domain III of Calpain Is a Ca2+-Regulated Phospholipid-Binding Domain. Biochemical and Biophysical Research Communications, 2001, 280, 1333-1339.	1.0	147
23	Functional Defects of a Muscle-specific Calpain, p94, Caused by Mutations Associated with Limb-Girdle Muscular Dystrophy Type 2A. Journal of Biological Chemistry, 1998, 273, 17073-17078.	1.6	142
24	Autolytic Transition of μCalpain upon Activation as Resolved by Antibodies Distinguishing between the Pre- and Post-Autolysis Forms1. Journal of Biochemistry, 1992, 111, 81-86.	0.9	139
25	Muscle RING-Finger Protein-1 (MuRF1) as a Connector of Muscle Energy Metabolism and Protein Synthesis. Journal of Molecular Biology, 2008, 376, 1224-1236.	2.0	138
26	Calpain chronicle—an enzyme family under multidisciplinary characterization. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2011, 87, 287-327.	1.6	132
27	A second type of rat phosphoinositide-specific phospholipase C containing a src-related sequence not essential for phosphoinositide-hydrolyzing activity. Journal of Biological Chemistry, 1989, 264, 21885-90.	1.6	132
28	Review. Biological Chemistry Hoppe-Seyler, 1995, 376, 523-530.	1.4	131
29	Structure and Physiology of Calpain, an Enigmatic Protease. Biochemical and Biophysical Research Communications, 1998, 245, 289-294.	1.0	121
30	Expression and Functional Characteristics of Calpain 3 Isoforms Generated through Tissue-Specific Transcriptional and Posttranscriptional Events. Molecular and Cellular Biology, 1999, 19, 4047-4055.	1.1	113
31	Impact of genetic insights into calpain biology. Journal of Biochemistry, 2011, 150, 23-37.	0.9	113
32	Tissue- and cell type-specific expression of mRNAS for four types of inositol phospholipid-specific phospholipase C. Biochemical and Biophysical Research Communications, 1989, 164, 406-412.	1.0	112
33	Purification of native p94, a muscle-specific calpain, and characterization of its autolysis. Biochemical Journal, 1998, 335, 589-596.	1.7	109
34	A novel tissue-specific calpain species expressed predominantly in the stomach comprises two alternative splicing products with and without Ca(2+)-binding domain. Journal of Biological Chemistry, 1993, 268, 19476-82.	1.6	109
35	Membrane-anchored metalloprotease MDC9 has an α-secretase activity responsible for processing the amyloid precursor protein. Biochemical Journal, 1999, 343, 371.	1.7	107
36	Muscle-Specific Calpain, p94, Interacts with the Extreme C-Terminal Region of Connectin, a Unique Region Flanked by Two Immunoglobulin C2 Motifs. Archives of Biochemistry and Biophysics, 1997, 342, 99-107.	1.4	106

#	Article	IF	CITATIONS
37	Regulation and physiological roles of the calpain system in muscular disorders. Cardiovascular Research, 2012, 96, 11-22.	1.8	104
38	Possible Regulation of the Conventional Calpain System by Skeletal Muscle-specific Calpain, p94/Calpain 3. Journal of Biological Chemistry, 2004, 279, 2761-2771.	1.6	101
39	Multiple Molecular Interactions Implicate the Connectin/Titin N2A Region as a Modulating Scaffold for p94/Calpain 3 Activity in Skeletal Muscle. Journal of Biological Chemistry, 2008, 283, 14801-14814.	1.6	95
40	The protease activity of a calpain-like cysteine protease in Saccharomyces cerevisiae is required for alkaline adaptation and sporulation. Molecular Genetics and Genomics, 1999, 260, 559-568.	2.4	91
41	Calpain Dissociates into Subunits in the Presence Ions. Biochemical and Biophysical Research Communications, 1995, 208, 376-383.	1.0	90
42	Constitutive Activation of the pH-Responsive Rim101 Pathway in Yeast Mutants Defective in Late Steps of the MVB/ESCRT Pathway. Molecular and Cellular Biology, 2005, 25, 9478-9490.	1.1	89
43	Stable expression of calpain 3 from a muscle transgene in vivo: Immature muscle in transgenic mice suggests a role for calpain 3 in muscle maturation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8874-8879.	3.3	87
44	Calpain Cleavage Prediction Using Multiple Kernel Learning. PLoS ONE, 2011, 6, e19035.	1.1	85
45	Dynamic distribution of muscle-specific calpain in mice has a key role in physical-stress adaptation and is impaired in muscular dystrophy. Journal of Clinical Investigation, 2010, 120, 2672-2683.	3.9	85
46	Induction and Myofibrillar Targeting of CARP, and Suppression of the Nkx2.5 Pathway in the MDM Mouse with Impaired Titin-based Signaling. Journal of Molecular Biology, 2004, 336, 145-154.	2.0	83
47	A catalytic subunit of calpain possesses full proteolytic activity. FEBS Letters, 1995, 358, 101-103.	1.3	80
48	An eccentric calpain, CAPN3/p94/calpain-3. Biochimie, 2016, 122, 169-187.	1.3	79
49	Thymoproteasomes produce unique peptide motifs for positive selection of CD8+ T cells. Nature Communications, 2015, 6, 7484.	5.8	73
50	Identification of a third ubiquitous calpain species — chicken muscle expresses four distinct calpains. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1261, 381-393.	2.4	71
51	Neoculin as a New Taste-modifying Protein Occurring in the Fruit ofCurculigo latifolia. Bioscience, Biotechnology and Biochemistry, 2004, 68, 1403-1407.	0.6	70
52	Extracellular Production of Neoculin, a Sweet-Tasting Heterodimeric Protein with Taste-Modifying Activity, by Aspergillus oryzae. Applied and Environmental Microbiology, 2006, 72, 3716-3723.	1.4	68
53	Conventional protein kinase C (PKC)-î± and novel PKCε, but not -δ, increase the secretion of an N-terminal fragment of Alzheimer's disease amyloid precursor protein from PKC cDNA transfected 3Y1 fibroblasts. FEBS Letters, 1995, 364, 203-206.	1.3	67
54	Nutrient-dependent Multimerization of the Mammalian Target of Rapamycin through the N-terminal HEAT Repeat Region. Journal of Biological Chemistry, 2006, 281, 28605-28614.	1.6	67

#	Article	IF	CITATIONS
55	Inhibition of calpain increases LIS1 expression and partially rescues in vivo phenotypes in a mouse model of lissencephaly. Nature Medicine, 2009, 15, 1202-1207.	15.2	67
56	Calpain 8/nCL-2 and Calpain 9/nCL-4 Constitute an Active Protease Complex, G-Calpain, Involved in Gastric Mucosal Defense. PLoS Genetics, 2010, 6, e1001040.	1.5	66
57	Non-Proteolytic Functions of Calpain-3 in Sarcoplasmic Reticulum in Skeletal Muscles. Journal of Molecular Biology, 2011, 407, 439-449.	2.0	66
58	Suppression of Calpain-dependent Cleavage of the CDK5 Activator p35 to p25 by Site-specific Phosphorylation. Journal of Biological Chemistry, 2007, 282, 1687-1694.	1.6	65
59	Expanding Members and Roles of the Calpain Superfamily and Their Genetically Modified Animals. Experimental Animals, 2010, 59, 549-566.	0.7	64
60	Ablation of the p16INK4a tumour suppressor reverses ageing phenotypes of klotho mice. Nature Communications, 2015, 6, 7035.	5.8	64
61	Distinct kinetics of subunit autolysis in mammalian m-calpain activation. FEBS Letters, 1994, 346, 263-267.	1.3	62
62	Suppressed Disassembly of Autolyzing p94/CAPN3 by N2A Connectin/Titin in a Genetic Reporter System. Journal of Biological Chemistry, 2006, 281, 18519-18531.	1.6	59
63	Understanding the substrate specificity of conventional calpains. Biological Chemistry, 2012, 393, 853-871.	1.2	57
64	Structure and physiological functions of ubiquitous and tissue-specific calpain species Muscle-specific calpain, p94, interacts with connectin/titin. Advances in Biophysics, 1996, 33, 101-122.	0.6	56
65	Molecular Cloning and Characterization of a Novel Tissue-Specific Calpain Predominantly Expressed in the Digestive Tract. Biological Chemistry, 1998, 379, 175-83.	1.2	55
66	Crystal Structure of Neoculin: Insights into its Sweetness and Taste-modifying Activity. Journal of Molecular Biology, 2006, 359, 148-158.	2.0	54
67	Single-Cell Chemical Lysis Method for Analyses of Intracellular Molecules Using an Array of Picoliter-Scale Microwells. Analytical Chemistry, 2008, 80, 9141-9149.	3.2	51
68	Myogenic Stage, Sarcomere Length, and Protease Activity Modulate Localization of Muscle-specific Calpain. Journal of Biological Chemistry, 2007, 282, 14493-14504.	1.6	48
69	Skeletal Muscle-specific Calpain Is an Intracellular Na+-dependent Protease. Journal of Biological Chemistry, 2010, 285, 22986-22998.	1.6	48
70	Characterization of a Human Digestive Tract-Specific Calpain, nCL-4, Expressed in the Baculovirus System. Archives of Biochemistry and Biophysics, 1999, 362, 22-31.	1.4	46
71	Discussion. Biochemical Pharmacology, 1998, 56, 415-420.	2.0	45
72	Calpain-6, a microtubule-stabilizing protein, regulates Rac1 activity and cell motility through interaction with GEF-H1. Journal of Cell Science, 2011, 124, 1214-1223.	1.2	45

#	Article	IF	CITATIONS
73	Removal of immunoglobulin-like domains from titin's spring segment alters titin splicing in mouse skeletal muscle and causes myopathy. Journal of General Physiology, 2014, 143, 215-230.	0.9	45
74	Molecular cloning of PalBH, a mammalian homologue of the Aspergillus atypical calpain PalB. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1517, 316-319.	2.4	44
75	Stomach-specific Calpain, nCL-2/Calpain 8, Is Active without Calpain Regulatory Subunit and Oligomerizes through C2-like Domains. Journal of Biological Chemistry, 2007, 282, 27847-27856.	1.6	44
76	Myopathy phenotype of transgenic mice expressing active site-mutated inactive p94 skeletal muscle-specific calpain, the gene product responsible for limb girdle muscular dystrophy type 2A. Human Molecular Genetics, 2000, 9, 1393-1402.	1.4	43
77	Calpain-6 Deficiency Promotes Skeletal Muscle Development and Regeneration. PLoS Genetics, 2013, 9, e1003668.	1.5	43
78	Domain II of m-calpain is a Ca2+-dependent cysteine protease. FEBS Letters, 2001, 501, 111-114.	1.3	41
79	Skeletal Muscle-Specific Calpain, p94, and Connectin/Titin: Their Physiological Functions and Relationship to Limb-Girdle Muscular Dystrophy Type 2A. Advances in Experimental Medicine and Biology, 2000, 481, 383-404.	0.8	41
80	Inhibitory NK Receptor Ly49Q Is Expressed on Subsets of Dendritic Cells in a Cellular Maturation- and Cytokine Stimulation-Dependent Manner. Journal of Immunology, 2005, 174, 4621-4629.	0.4	40
81	Predictions of Cleavability of Calpain Proteolysis by Quantitative Structure-Activity Relationship Analysis Using Newly Determined Cleavage Sites and Catalytic Efficiencies of an Oligopeptide Array. Molecular and Cellular Proteomics, 2016, 15, 1262-1280.	2.5	40
82	The Structure of Calcium-Free Human m-Calpain Implications for Calcium Activation and Function. Trends in Cardiovascular Medicine, 2001, 11, 222-229.	2.3	39
83	Sequence comparison among muscle-specific calpain, p94, and calpain subunits. BBA - Proteins and Proteomics, 1992, 1160, 55-62.	2.1	36
84	Mutation of potential N-linked glycosylation sites in the Alzheimer's disease amyloid precursor protein (APP). Neuroscience Letters, 1996, 221, 57-60.	1.0	35
85	Proteasome Inhibitors Induce the Association of Alzheimer's Amyloid Precursor Protein with Hsc73. Biochemical and Biophysical Research Communications, 1999, 254, 804-810.	1.0	35
86	Possible functions of p94 in connectin-mediated signaling pathways in skeletal muscle cells. Journal of Muscle Research and Cell Motility, 2006, 26, 409-417.	0.9	35
87	Functional Evolution of Duplicated Odorant-Binding Protein Genes, Obp57d and Obp57e, in Drosophila. PLoS ONE, 2012, 7, e29710.	1.1	34
88	Structural Basis for Possible Calcium-Induced Activation Mechanisms of Calpains. Biological Chemistry, 2001, 382, 753-66.	1.2	33
89	CaMPDB: A RESOURCE FOR CALPAIN AND MODULATORY PROTEOLYSIS. , 2010, , .		32
90	Intravitreal injection or topical eye-drop application of a μ-calpain C2L domain peptide protects against photoreceptor cell death in Royal College of Surgeons' rats, a model of retinitis pigmentosa. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1783-1795.	1.8	30

#	Article	IF	CITATIONS
91	Overexpression, Purification, and Characterization of Human m-Calpain and Its Active Site Mutant, m-C105S-Calpain, Using a Baculovirus Expression System. Journal of Biochemistry, 1998, 124, 957-961.	0.9	29
92	Thimet Oligopeptidase Cleaves the Full-Length Alzheimer Amyloid Precursor Protein at a Â-Secretase Cleavage Site in COS Cells. Journal of Biochemistry, 1999, 126, 235-242.	0.9	29
93	Newly identified exons encoding novel variants of p94/calpain 3 are expressed ubiquitously and overlap the α-glucosidase C gene. FEBS Letters, 2003, 555, 623-630.	1.3	29
94	Stomach-specific Calpain, nCL-2, Localizes in Mucus Cells and Proteolyzes the β-Subunit of Coatomer Complex, β-COP. Journal of Biological Chemistry, 2006, 281, 11214-11224.	1.6	29
95	Comprehensive survey of p94/calpain 3 substrates by comparative proteomics – Possible regulation of protein synthesis by p94. Biotechnology Journal, 2007, 2, 565-576.	1.8	29
96	Calpain-6 confers atherogenicity to macrophages by dysregulating pre-mRNA splicing. Journal of Clinical Investigation, 2016, 126, 3417-3432.	3.9	29
97	CaMPDB: a resource for calpain and modulatory proteolysis. Genome Informatics, 2010, 22, 202-13.	0.4	29
98	Effect of Preslaughter Feed Withdrawal Period on Longissimus Tenderness and the Expression of Calpains in the Ovine. Journal of Agricultural and Food Chemistry, 2001, 49, 1990-1998.	2.4	28
99	C/EBPα Is Required for Proteolytic Cleavage of Cyclin A by Calpain 3 in Myeloid Precursor Cells. Journal of Biological Chemistry, 2002, 277, 33848-33856.	1.6	28
100	Neoculin, a taste-modifying protein, is recognized by human sweet taste receptor. NeuroReport, 2006, 17, 1241-1244.	0.6	28
101	The N- and C-terminal autolytic fragments of CAPN3/p94/calpain-3 restore proteolytic activity by intermolecular complementation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5527-36.	3.3	26
102	Molecular cloning and characterization of cDNAs coding for apo-polysialoglycoprotein of rainbow trout eggs. Multiple mRNA species transcribed from multiple genes contain diverged numbers of exact 39-base (13-amino acid) repeats. Journal of Biological Chemistry, 1988, 263, 17678-84.	1.6	26
103	Autolysis of Calpain Large Subunit Inducing Irreversible Dissociation of Stoichiometric Heterodimer of Calpain. Bioscience, Biotechnology and Biochemistry, 2000, 64, 689-695.	0.6	25
104	Primary sequences of rat μ-calpain large and small subunits are, respectively, moderately and highly similar to those of human. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1996, 1309, 37-41.	2.4	23
105	Arachidonate Metabolites Affect the Secretion of an N-Terminal Fragment of Alzheimer′s Disease Amyloid Precursor Protein. Biochemical and Biophysical Research Communications, 1995, 209, 841-849.	1.0	22
106	PLEIAD/SIMC1/C5orf25, a Novel Autolysis Regulator for a Skeletal-Muscle-Specific Calpain, CAPN3, Scaffolds a CAPN3 Substrate, CTBP1. Journal of Molecular Biology, 2013, 425, 2955-2972.	2.0	22
107	The deletion of the C-terminal tail and addition of an endoplasmic reticulum targeting signal to Alzheimer's amyloid precursor protein change its localization, secretion, and intracellular proteolysis. FEBS Journal, 1998, 258, 291-300.	0.2	21
108	Limited Proteolysis of Filamin Is Catalyzed by Caspase-3 in U937 and Jurkat Cells. Journal of Biochemistry, 2001, 130, 535-542.	0.9	21

#	Article	IF	CITATIONS
109	Expression of a novel human myotonin protein kinase (MtPK) cDNA clone which encodes a protein with a thymopoietin-like domain in COS cells. FEBS Letters, 1994, 351, 22-26.	1.3	20
110	Comparative structures of the apopolysialoglycoproteins from unfertilized and fertilized eggs of salmonid fishes. Biochemistry, 1988, 27, 7141-7145.	1.2	19
111	Structural Basis for Possible Calcium-Induced Activation Mechanisms of Calpains. Biological Chemistry, 2001, 382, 753-766.	1.2	19
112	MURF1 deficiency suppresses unloading-induced effects on osteoblasts and osteoclasts to lead to bone loss. Journal of Cellular Biochemistry, 2011, 112, 3525-3530.	1.2	19
113	Structure and physiological functions of ubiquitous and tissue-specific calpain species. Muscle-specific calpain, p94, interacts with connectin/titin. Advances in Biophysics, 1996, 33, 101-22.	0.6	19
114	Molecular cloning of cDNAs for two subunits of rat multicatalytic proteinase. Existence of N-terminal conserved and C-terminal diverged sequences among subunits. FEBS Journal, 1990, 193, 775-781.	0.2	18
115	Deletion of an Endosomal/Lysosomal Targeting Signal Promotes the Secretion of Alzheimer's Disease Amyloid Precursor Protein (APP). Journal of Biochemistry, 1997, 121, 585-590.	0.9	18
116	Both the Conserved and the Unique Gene Structure of Stomach-Specific Calpains Reveal Processes of Calpain Gene Evolution. Journal of Molecular Evolution, 2001, 53, 191-203.	0.8	18
117	Involvement of calpainâ€7 in epidermal growth factor receptor degradation via the endosomal sorting pathway. FEBS Journal, 2014, 281, 3642-3655.	2.2	17
118	New Aspect of the Research on Limb-Girdle Muscular Dystrophy 2A A Molecular Biologic and Biochemical Approach to Pathology. Trends in Cardiovascular Medicine, 1999, 9, 114-118.	2.3	16
119	Novel isoform of myotonin protein kinase: gene product of myotonic dystrophy is localized in the sarcoplasmic reticulum of skeletal muscle. American Journal of Pathology, 1997, 150, 1285-95.	1.9	15
120	Expanded CTG repeats in myotonin protein kinase suppresses myogenic differentiation. NeuroReport, 1997, 8, 3749-3753.	0.6	14
121	Flexibility Analysis and Structure Comparison of Two Crystal Forms of Calcium-Free Human m-Calpain. Biological Chemistry, 2002, 383, 1415-22.	1.2	14
122	Calpain System Regulates the Differentiation of Adult Primitive Mesenchymal ST-13 Adipocytes. Endocrinology, 2006, 147, 4811-4819.	1.4	14
123	Aspergillus oryzae palBory encodes a calpain-like protease: Homology to Emericella nidulans PalB and conservation of functional regions. Journal of Bioscience and Bioengineering, 1999, 88, 438-440.	1.1	13
124	Does the severity of the LGMD2A phenotype in compound heterozygotes depend on the combination of mutations?. Muscle and Nerve, 2011, 44, 710-714.	1.0	13
125	Efficient expression and purification of recombinant human m-calpain using an Escherichia coli expression system at low temperature. Journal of Biochemistry, 2012, 151, 417-422.	0.9	13
126	A Gastrointestinal Calpain Complex, G-calpain, Is a Heterodimer of CAPN8 and CAPN9 Calpain Isoforms, Which Play Catalytic and Regulatory Roles, Respectively. Journal of Biological Chemistry, 2016, 291, 27313-27322.	1.6	13

#	Article	IF	CITATIONS
127	Association and Dissociation of the Calcium-Binding Domains of Calpain by Ca2+. Biochemical and Biophysical Research Communications, 1999, 257, 63-66.	1.0	12
128	Heterogeneous Nuclear Ribonucleoprotein K Interacts with and Is Proteolyzed by Calpainin vivo. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1786-1796.	0.6	12
129	Organization and primary sequence of multiple genes coding for the apopolysialoglycoproteins of rainbow trout. Journal of Molecular Biology, 1990, 211, 35-48.	2.0	11
130	Effect of artificial (CTG) repeat expansion on the expression of myotonin protein kinase (MtPK) in COS-1 cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1996, 1315, 112-116.	1.8	11
131	Amyloid Precursor Protein Is Found in Lysosomes. Gerontology, 1993, 39, 24-29.	1.4	10
132	Highly conserved structure in the promoter region of the gene for muscle-specific calpain, p94. Biological Chemistry, 1996, 377, 859-64.	1.2	10
133	Degradation of Fodrin by m-Calpain in Fibroblasts Adhering to Fibrillar Collagen I Gel. Journal of Biochemistry, 2004, 136, 777-785.	0.9	9
134	The importance of conserved amino acid residues in p94 protease subâ€domain IIb and the IS2 region for constitutive autolysis. FEBS Letters, 2008, 582, 691-698.	1.3	9
135	Muscleâ€specific calpainâ€3 is phosphorylated in its unique insertion region for enrichment in a myofibril fraction. Genes To Cells, 2014, 19, 830-841.	0.5	8
136	QUANTIFICATION OF CALPAIN-RELATED MOLECULES BY SPECIFIC PCR AMPLIFICATION AND ITS APPLICATION TO HUMAN MUSCULAR DYSTROPHY . Biomedical Research, 1994, 15, 337-346.	0.3	8
137	A simple purification and fluorescent assay method of the poliovirus 3C protease searching for specific inhibitors. Journal of Virological Methods, 2000, 84, 117-126.	1.0	7
138	Efficient expression and purification of recombinant human μ alpain using an <i><scp>E</scp>scherichia coli</i> expression system. Genes To Cells, 2013, 18, 753-763.	0.5	7
139	Crystallization and preliminary X-ray analysis of recombinant full-length human m-calpain. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 73-75.	2.5	6
140	Up-Regulation of Dystrophin mRNA by Exposure to Dibutyryl-cAMP in the C2C12 Muscle Cell Line. Biochemical and Biophysical Research Communications, 1995, 210, 654-659.	1.0	5
141	The titin cDNA sequence and partial genomic sequences: Insights into the molecular genetics, cell biology and physiology of the titin filament system. Reviews of Physiology, Biochemistry and Pharmacology, 1999, 138, 19-55.	0.9	5
142	Coexpression of the CUG-Binding Protein Reduces DM Protein Kinase Expression in COS Cells. Journal of Biochemistry, 2001, 130, 581-587.	0.9	5
143	Immunocytochemical localization of a full-length myotonin protein kinase in rat L6 myoblasts. Neuroscience Letters, 1996, 218, 214-216.	1.0	4
144	Molecular Cloning and Characterization of cDNAs for the μ-Type Large Subunit and the Small Subunit of Chicken Calpain. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 118, 539-547.	0.7	4

#	Article	IF	CITATIONS
145	Overexpression of myotonic dystrophy protein kinase in C2C12 myogenic culture involved in the expression of ferritin heavy chain and interleukin-1α mRNAs. Journal of the Neurological Sciences, 1999, 167, 26-33.	0.3	4
146	IDENTIFICATION AND PURIFICATION OF MYOTONIN PROTEIN KINASE (MtPK) FROM RAT SKELETAL MUSCLE SARCOPLASMIC RETICULUM. Biomedical Research, 1998, 19, 93-99.	0.3	4
147	Processing and Secretion of Alzheimer's Disease Amyloid Precursor Protein Tohoku Journal of Experimental Medicine, 1994, 174, 209-216.	0.5	3
148	Amino acid sequence alignment of vertebrate CAPN3/calpain-3/p94. Data in Brief, 2015, 5, 366-367.	0.5	3
149	Developing fluorescence sensor probe to capture activated muscle-specific calpain-3 (CAPN3) in living muscle cells. Biology Open, 2020, 9, .	0.6	3
150	Molecular Cloning and Characterization of cDNAs Coding for Apopolysialoglycoproteins in Cherry Salmon (Oncorhynchus masou) Eggs. Journal of Biochemistry, 1990, 107, 61-67.	0.9	2
151	Molecular Analysis of p94 and Its Application to Diagnosis of Limb Girdle Muscular Dystrophy Type 2A. , 2000, 144, 75-84.		2
152	Calcium and Muscle Disease: Pathophysiology of Calpains and Limb-Girdle Muscular Dystrophy Type 2A (LGMD2A). , 2000, , 443-464.		2
153	O.5 Skeletal muscle-specific calpain, p94/calpain 3, dynamically distributes in skeletal muscle cells to adapt to physical stress, defects of which cause muscular dystrophy. Neuromuscular Disorders, 2010, 20, 598-599.	0.3	1
154	Other Calpains. , 2013, , 2027-2038.		1
155	Calpain-1/μ-Calpain. , 2013, , 1995-2007.		1
156	Sequence comparison among subunits of multicatalytic proteinase. Biomedica Biochimica Acta, 1991, 50, 459-64.	0.1	1
157	3 A Novel Calpain Species, n-Calpain, Active at nM Levels of Calcium?. , 1994, , 35-46.		0
158	Metabolism of amyloid precursor protein in COS cells transfected with a beta-secretase candidate. Cytotechnology, 2000, 33, 213-219.	0.7	0
159	Corrigendum to: Newly identified exons encoding novel variants of p94/calpain 3 are expressed ubiquitously and overlap the α-glucosidase C gene (FEBS 27898). FEBS Letters, 2004, 557, 293-293.	1.3	0
160	P1.27 Redundant and non-redundant effects of Ca2+ and Na+ on the activation of p94/calpain 3. Neuromuscular Disorders, 2010, 20, 608.	0.3	0
161	Calpain-2/m-Calpain. , 2013, , 2007-2011.		0

#	Article	IF	CITATIONS
163	Muscle Calpain. , 2013, , 2011-2017.		0
164	Calpain. , 2004, , 300-306.		0
165	MYOTONIN PROTEIN KINASE (MtPK) AFFECTS THE CHLORIDE PERMEABILITY OF C2C12 MYOGENIC CELLS. Biomedical Research, 1998, 19, 191-198.	0.3	0
166	Calpains: structure and function of the calpain super family. , 1999, , 159-174.		0