
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2159626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nature Communications, 2012, 3, 1033.	12.8	411
2	Enzyme-Instructed Molecular Self-assembly Confers Nanofibers and a Supramolecular Hydrogel of Taxol Derivative. Journal of the American Chemical Society, 2009, 131, 13576-13577.	13.7	373
3	Aromaticâ^'Aromatic Interactions Induce the Self-Assembly of Pentapeptidic Derivatives in Water To Form Nanofibers and Supramolecular Hydrogels. Journal of the American Chemical Society, 2010, 132, 2719-2728.	13.7	328
4	<scp>d</scp> -Amino Acids Boost the Selectivity and Confer Supramolecular Hydrogels of a Nonsteroidal Anti-Inflammatory Drug (NSAID). Journal of the American Chemical Society, 2013, 135, 542-545.	13.7	264
5	Supramolecular Hydrogel of a <scp>d</scp> -Amino Acid Dipeptide for Controlled Drug Release in Vivo. Langmuir, 2009, 25, 8419-8422.	3.5	257
6	Small peptide nanofibers as the matrices of molecular hydrogels for mimicking enzymes and enhancing the activity of enzymes. Chemical Society Reviews, 2010, 39, 3425.	38.1	242
7	Dephosphorylation of <scp>d</scp> -Peptide Derivatives to Form Biofunctional, Supramolecular Nanofibers/Hydrogels and Their Potential Applications for Intracellular Imaging and Intratumoral Chemotherapy. Journal of the American Chemical Society, 2013, 135, 9907-9914.	13.7	226
8	Versatile Small-Molecule Motifs for Self-Assembly in Water and the Formation of Biofunctional Supramolecular Hydrogels. Langmuir, 2011, 27, 529-537.	3.5	203
9	Core–shell NaYF4:Yb3+,Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials, 2011, 32, 7200-7208.	11.4	196
10	Conjugates of naphthalene and dipeptides produce molecular hydrogelators with high efficiency of hydrogelation and superhelical nanofibers. Journal of Materials Chemistry, 2007, 17, 850-854.	6.7	192
11	Tumor-Specific Formation of Enzyme-Instructed Supramolecular Self-Assemblies as Cancer Theranostics. ACS Nano, 2015, 9, 9517-9527.	14.6	182
12	Fluorescent Magnetic Nanocrystals by Sequential Addition of Reagents in a One-Pot Reaction:  A Simple Preparation for Multifunctional Nanostructures. Journal of the American Chemical Society, 2007, 129, 11928-11935.	13.7	168
13	Molecular Nanofibers of Olsalazine Form Supramolecular Hydrogels for Reductive Release of an Anti-inflammatory Agent. Journal of the American Chemical Society, 2010, 132, 17707-17709.	13.7	165
14	A Redox Responsive, Fluorescent Supramolecular Metallohydrogel Consists of Nanofibers with Single-Molecule Width. Journal of the American Chemical Society, 2013, 135, 5008-5011.	13.7	151
15	Inâ€Vitro and Inâ€Vivo Enzymatic Formation of Supramolecular Hydrogels Based on Self-Assembled Nanofibers of a β-Amino Acid Derivative. Small, 2007, 3, 558-562.	10.0	144
16	Synergistic enzymatic and bioorthogonal reactions for selective prodrug activation in living systems. Nature Communications, 2018, 9, 5032.	12.8	141
17	Supramolecular Nanofibers and Hydrogels of Nucleopeptides. Angewandte Chemie - International Edition, 2011, 50, 9365-9369.	13.8	133
18	Aromatic–Aromatic Interactions Enhance Interfiber Contacts for Enzymatic Formation of a Spontaneously Aligned Supramolecular Hydrogel. Journal of the American Chemical Society, 2014, 136, 2970-2973.	13.7	126

#	Article	IF	CITATIONS
19	Multifunctional, Biocompatible Supramolecular Hydrogelators Consist Only of Nucleobase, Amino Acid, and Glycoside. Journal of the American Chemical Society, 2011, 133, 17513-17518.	13.7	115
20	Enzymatic hydrogelation to immobilize an enzyme for high activity and stability. Soft Matter, 2008, 4, 550.	2.7	106
21	Enzymeâ€instructed selfâ€assembly of peptide derivatives to form nanofibers and hydrogels. Biopolymers, 2010, 94, 19-31.	2.4	99
22	Enzymatic formation of a photoresponsive supramolecular hydrogel. Chemical Communications, 2010, 46, 5364.	4.1	99
23	Exceptionally small supramolecular hydrogelators based on aromatic–aromatic interactions. Beilstein Journal of Organic Chemistry, 2011, 7, 167-172.	2.2	94
24	Introducing <scp>d</scp> -Amino Acid or Simple Glycoside into Small Peptides to Enable Supramolecular Hydrogelators to Resist Proteolysis. Langmuir, 2012, 28, 13512-13517.	3.5	76
25	Enzymeâ€Instructed Supramolecular Selfâ€Assembly with Anticancer Activity. Advanced Materials, 2019, 31, e1804814.	21.0	75
26	Novel Anisotropic Supramolecular Hydrogel with High Stability over a Wide pH Range. Langmuir, 2011, 27, 1510-1512.	3.5	72
27	Probing Nanoscale Self-Assembly of Nonfluorescent Small Molecules inside Live Mammalian Cells. ACS Nano, 2013, 7, 9055-9063.	14.6	69
28	The conjugation of nonsteroidal anti-inflammatory drugs (NSAID) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels. Beilstein Journal of Organic Chemistry, 2013, 9, 908-917.	2.2	63
29	Selfâ€Delivery Multifunctional Antiâ€HIV Hydrogels for Sustained Release. Advanced Healthcare Materials, 2013, 2, 1586-1590.	7.6	60
30	Calcium Ions to Cross-Link Supramolecular Nanofibers to Tune the Elasticity of Hydrogels over Orders of Magnitude. Langmuir, 2011, 27, 14425-14431.	3.5	56
31	Using supramolecular hydrogels to discover the interactions between proteins and molecular nanofibers of small molecules. Chemical Communications, 2012, 48, 8404.	4.1	49
32	A versatile supramolecular hydrogel of nitrilotriacetic acid (NTA) for binding metal ions and magnetorheological response. Journal of Materials Chemistry, 2011, 21, 6804.	6.7	47
33	Prion-like Nanofibrils of Small Molecules (PriSM) Selectively Inhibit Cancer Cells by Impeding Cytoskeleton Dynamics. Journal of Biological Chemistry, 2014, 289, 29208-29218.	3.4	46
34	Supramolecular hydrogels formed by the conjugates of nucleobases, Arg-Gly-Asp (RGD) peptides, and glucosamine. Soft Matter, 2012, 8, 7402.	2.7	42
35	pH Switchable Nanoassembly for Imaging a Broad Range of Malignant Tumors. ACS Nano, 2017, 11, 12446-12452.	14.6	42
36	Post-Self-Assembly Cross-Linking of Molecular Nanofibers for Oscillatory Hydrogels. Langmuir, 2012, 28, 3063-3066.	3.5	41

#	Article	IF	CITATIONS
37	Imaging Self-Assembly Dependent Spatial Distribution of Small Molecules in a Cellular Environment. Langmuir, 2013, 29, 15191-15200.	3.5	41
38	Supramolecular hydrogelators of N-terminated dipeptides selectively inhibit cancer cells. Chemical Communications, 2011, 47, 12625.	4.1	39
39	Redox supramolecular self-assemblies nonlinearly enhance fluorescence to identify cancer cells. Chemical Communications, 2018, 54, 5385-5388.	4.1	37
40	\hat{I}^2 -Galactosidase-instructed formation of molecular nanofibers and a hydrogel. Nanoscale, 2011, 3, 2859.	5.6	34
41	Catalytic dephosphorylation of adenosine monophosphate (AMP) to form supramolecular nanofibers/hydrogels. Chemical Communications, 2012, 48, 2098.	4.1	34
42	The first supramolecular peptidic hydrogelator containing taurine. Chemical Communications, 2014, 50, 2772-2774.	4.1	32
43	Supramolecular hydrogels based on the epitope of potassium ion channels. Chemical Communications, 2011, 47, 8772.	4.1	31
44	Molecular Design of β‧heet Peptide for the Multiâ€Modal Analysis of Disease. Angewandte Chemie - International Edition, 2019, 58, 1626-1631.	13.8	30
45	<scp>l</scp> -Rhamnose-containing supramolecular nanofibrils as potential immunosuppressive materials. Organic and Biomolecular Chemistry, 2014, 12, 6816.	2.8	25
46	Dynamic Detection of Active Enzyme Instructed Supramolecular Assemblies <i>In Situ via</i> Super-Resolution Microscopy. ACS Nano, 2020, 14, 4882-4889.	14.6	25
47	Supramolecular assemblies mimicking neutrophil extracellular traps for MRSE infection control. Biomaterials, 2020, 253, 120124.	11.4	22
48	Encoding Reversible Hierarchical Structures with Supramolecular Peptide–DNA Materials. Bioconjugate Chemistry, 2019, 30, 1864-1869.	3.6	18
49	Metal ions modulation of the self-assembly of short peptide conjugated nonsteroidal anti-inflammatory drugs (NSAIDs). Nanoscale, 2020, 12, 7960-7968.	5.6	17
50	Hydrogen sulfide induced supramolecular self-assembly in living cells. Chemical Communications, 2018, 54, 9051-9054.	4.1	16
51	Isothermal kinase-triggered supramolecular assemblies as drug sensitizers. Chemical Science, 2020, 11, 1132-1139.	7.4	12
52	The enzyme-instructed assembly of the core of yeast prion Sup35 to form supramolecular hydrogels. Journal of Materials Chemistry B, 2016, 4, 1318-1323.	5.8	11
53	Enzymatic non-covalent synthesis of supramolecular assemblies as a general platform for bioorthogonal prodrugs activation to combat drug resistance. Biomaterials, 2021, 277, 121119.	11.4	11
54	Using a peptide segment to covalently conjugate doxorubicin and taxol for the study of drug combination effect. RSC Advances, 2015, 5, 101475-101479.	3.6	10

#	Article	IF	CITATIONS
55	Supramolecular Self-Assembly of a Model Hydrogelator: Characterization of Fiber Formation and Morphology. Gels, 2016, 2, 27.	4.5	9
56	Redox-Mediated Reversible Supramolecular Assemblies Driven by Switch and Interplay of Peptide Secondary Structures. Biomacromolecules, 2021, 22, 2563-2572.	5.4	9
57	Synthesis, molecular structure and photoluminescence properties of 1,2-diphenyl-4-(3-methoxyphenyl)-1,3-cyclopentadiene. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 134, 22-27.	3.9	8
58	Morphology-controlled assembly and enhanced emission of fluorescence in organic nanospheres and microrods based on 1,2-diphenyl-4-(4-dibenzothienyl)phenyl-1,3-cyclopentadiene. CrystEngComm, 2015, 17, 9311-9317.	2.6	7
59	One‣tep Stereoselective Synthesis of (2 <i>Z,</i> 4 <i>Z,</i> 6 <i>Z,</i> 8 <i>Z</i>)â€Decatetraene Diketone from Pyrylium Salts. European Journal of Organic Chemistry, 2014, 2014, 515-522.	2.4	6
60	Increasing the Assembly Efficacy of Peptidic β-Sheets for a Highly-Sensitive HIV Detection. Analytical Chemistry, 2020, 92, 11089-11094.	6.5	6
61	Pathological environment directed in situ peptidic supramolecular assemblies for nanomedicines. Biomedical Materials (Bristol), 2021, 16, 022011.	3.3	6
62	Enzyme-Instructed Self-assembly in Biological Milieu for Theranostics Purpose. Current Medicinal Chemistry, 2019, 26, 1351-1365.	2.4	6
63	Enzyme-Regulated Peptide-Liquid Metal Hybrid Hydrogels as Cell Amber for Single-Cell Manipulation. ACS Applied Materials & Interfaces, 2020, 12, 45807-45813.	8.0	3
64	Bioorthogonal Disassembly of Tetrazine Bearing Supramolecular Assemblies Inside Living Cells. Small, 2022, 18, e2104772.	10.0	3
65	Determination of the packing model of a supramolecular nanofiber <i>via</i> mass-per-length measurement and <i>de novo</i> simulation. Nanoscale, 2018, 10, 3990-3996.	5.6	2
66	Molecular Design of β‧heet Peptide for the Multiâ€Modal Analysis of Disease. Angewandte Chemie, 2019, 131, 1640-1645.	2.0	2
67	Enzyme-instructed supramolecular assemblies promote intracellular boron accumulation for boron neutron capture therapy. Nanotechnology, 2021, 32, 435602.	2.6	2
68	Enzyme-Instructed Self-assembly of Small Peptides In Vivo for Biomedical Application. Nanomedicine and Nanotoxicology, 2018, , 89-114.	0.2	1
69	Evaluation of the effects of phenylalanine and carboxylate on the rheological behaviors of small molecule hydrogelators containing naphthalene. Materials Research Society Symposia Proceedings, 2012, 1418, 57.	0.1	0
70	Supramolecular Self-Assembly Inside Living Mammalian Cells. Materials Research Society Symposia Proceedings, 2014, 1622, 85-93.	0.1	0
71	Gag Protein Oriented Supramolecular Nets as Potential HIV Traps. Bioconjugate Chemistry, 2021, 32, 106-110.	3.6	0