Jesus Sot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2159237/publications.pdf Version: 2024-02-01

IFSUS SOT

#	Article	IF	CITATIONS
1	Erythrocyte Membrane Nanomechanical Rigidity Is Decreased in Obese Patients. International Journal of Molecular Sciences, 2022, 23, 1920.	4.1	8
2	Phase-selective staining of model and cell membranes, lipid droplets and lipoproteins with fluorescent solvatochromic pyrene probes. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183470.	2.6	10
3	Engineering and development of model lipid membranes mimicking the HeLa cell membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127663.	4.7	5
4	The extent of protein hydration dictates the preference for heterogeneous or homogeneous nucleation generating either parallel or antiparallel β-sheet α-synuclein aggregates. Chemical Science, 2020, 11, 11902-11914.	7.4	30
5	Characterization of monolayers and liposomes that mimic lipid composition of HeLa cells. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111288.	5.0	5
6	A fluorogenic cyclic peptide for imaging and quantification of drug-induced apoptosis. Nature Communications, 2020, 11, 4027.	12.8	45
7	C24:0 and C24:1 sphingolipids in cholesterol-containing, five- and six-component lipid membranes. Scientific Reports, 2020, 10, 14085.	3.3	9
8	Fast and slow biomembrane solubilizing detergents: Insights into their mechanism of action. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110430.	5.0	14
9	The interaction of lipid-liganded gold clusters (Aurora â,,¢) with lipid bilayers. Chemistry and Physics of Lipids, 2019, 218, 40-46.	3.2	5
10	Omega-3 polyunsaturated fatty acids do not fluidify bilayers in the liquid-crystalline state. Scientific Reports, 2018, 8, 16240.	3.3	17
11	The fatty acids of sphingomyelins and ceramides in mammalian tissues and cultured cells: Biophysical and physiological implications. Chemistry and Physics of Lipids, 2018, 217, 29-34.	3.2	26
12	Clearly Detectable, Kinetically Restricted Solid–Solid Phase Transition in cis-Ceramide Monolayers. Langmuir, 2018, 34, 11749-11758.	3.5	6
13	Pb(II) Induces Scramblase Activation and Ceramide-Domain Generation in Red Blood Cells. Scientific Reports, 2018, 8, 7456.	3.3	26
14	Complex Effects of 24:1 Sphingolipids in Membranes Containing Dioleoylphosphatidylcholine and Cholesterol. Langmuir, 2017, 33, 5545-5554.	3.5	17
15	A Trp-BODIPY cyclic peptide for fluorescence labelling of apoptotic bodies. Chemical Communications, 2017, 53, 945-948.	4.1	67
16	Coating Graphene Oxide with Lipid Bilayers Greatly Decreases Its Hemolytic Properties. Langmuir, 2017, 33, 8181-8191.	3.5	20
17	Cholesterol–Ceramide Interactions in Phospholipid and Sphingolipid Bilayers As Observed by Positron Annihilation Lifetime Spectroscopy and Molecular Dynamics Simulations. Langmuir, 2016, 32, 5434-5444.	3.5	17
18	Identification of a Membrane-bound Prepore Species Clarifies the Lytic Mechanism of Actinoporins. Journal of Biological Chemistry, 2016, 291, 19210-19219.	3.4	23

JESUS SOT

#	Article	IF	CITATIONS
19	Ceramide-Induced Lamellar Gel Phases in Fluid Cell Lipid Extracts. Langmuir, 2016, 32, 9053-9063.	3.5	20
20	Type I phosphatidylinositol 4â€phosphate 5â€kinase homo―and heterodimerization determines its membrane localization and activity. FASEB Journal, 2015, 29, 2371-2385.	0.5	15
21	Histones Cause Aggregation and Fusion of Lipid Vesicles Containing Phosphatidylinositol-4-Phosphate. Biophysical Journal, 2015, 108, 863-871.	0.5	7
22	Fluorescent Polyene Ceramide Analogues as Membrane Probes. Langmuir, 2015, 31, 2484-2492.	3.5	8
23	End-Product Diacylglycerol Enhances the Activity of PI-PLC through Changes in Membrane Domain Structure. Biophysical Journal, 2015, 108, 1672-1682.	0.5	9
24	Interaction of Clostridium perfringens epsilon-toxin with biological and model membranes: A putative protein receptor in cells. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 797-804.	2.6	22
25	High-Melting Lipid Mixtures and the Origin of Detergent-Resistant Membranes Studied with Temperature-Solubilization Diagrams. Biophysical Journal, 2014, 107, 2828-2837.	0.5	11
26	Biophysical Properties of Novel 1-Deoxy-(Dihydro)ceramides Occurring in Mammalian Cells. Biophysical Journal, 2014, 107, 2850-2859.	0.5	42
27	Lipid bilayers containing sphingomyelins and ceramides of varying N-acyl lengths: A glimpse into sphingolipid complexity. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 456-464.	2.6	56
28	Biophysical properties of sphingosine, ceramides and other simple sphingolipids. Biochemical Society Transactions, 2014, 42, 1401-1408.	3.4	44
29	N-Nervonoylsphingomyelin (C24:1) Prevents Lateral Heterogeneity in Cholesterol-Containing Membranes. Biophysical Journal, 2014, 106, 2606-2616.	0.5	44
30	Ether- versus Ester-Linked Phospholipid Bilayers Containing either Linear or Branched Apolar Chains. Biophysical Journal, 2014, 107, 1364-1374.	0.5	27
31	Histones and DNA Compete for Binding Polyphosphoinositides in Bilayers. Biophysical Journal, 2014, 106, 1092-1100.	0.5	7
32	Lamellar Gel (Lβ) Phases of Ternary Lipid Composition Containing Ceramide and Cholesterol. Biophysical Journal, 2014, 106, 621-630.	0.5	41
33	Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids. Biophysical Journal, 2014, 106, 2577-2584.	0.5	21
34	The onset of Triton X-100 solubilization of sphingomyelin/ceramide bilayers: effects of temperature and composition. Chemistry and Physics of Lipids, 2013, 167-168, 57-61.	3.2	5
35	Recruitment of a phospholipase C/sphingomyelinase into non-lamellar lipid droplets during hydrolysis of lipid bilayers. Chemistry and Physics of Lipids, 2013, 166, 12-17.	3.2	7
36	Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex. EMBO Journal, 2012, 31, 4535-4546.	7.8	74

JESUS SOT

#	Article	IF	CITATIONS
37	Model Systems of Precursor Cellular Membranes: Long-Chain Alcohols Stabilize Spontaneously Formed Oleic Acid Vesicles. Biophysical Journal, 2012, 102, 278-286.	0.5	52
38	Imaging the early stages of phospholipase C/sphingomyelinase activity on vesicles containing coexisting ordered-disordered and gel-fluid domains. Journal of Lipid Research, 2011, 52, 635-645.	4.2	13
39	Dihydrosphingomyelin Impairs HIV-1 Infection by Rigidifying Liquid-Ordered Membrane Domains. Chemistry and Biology, 2010, 17, 766-775.	6.0	76
40	Cholesterol Displaces Palmitoylceramide from Its Tight Packing with Palmitoylsphingomyelin in the Absence of a Liquid-Disordered Phase. Biophysical Journal, 2010, 99, 1119-1128.	0.5	41
41	Electroformation of Ciant Unilamellar Vesicles from Native Membranes and Organic Lipid Mixtures for the Study of Lipid Domains under Physiological Ionic-Strength Conditions. Methods in Molecular Biology, 2010, 606, 105-114.	0.9	25
42	Calcium inhibits diacylglycerol uptake by serum albumin. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 701-707.	2.6	3
43	Sphingosine-1-Phosphate as an Amphipathic Metabolite: Its Properties in Aqueous and Membrane Environments. Biophysical Journal, 2009, 97, 1398-1407.	0.5	30
44	Coexistence of Immiscible Mixtures of Palmitoylsphingomyelin and Palmitoylceramide in Monolayers and Bilayers. Biophysical Journal, 2009, 97, 2717-2726.	0.5	59
45	Cholesterol displacement by ceramide in sphingomyelinâ€containing liquidâ€ordered domains, and generation of gel regions in giant lipidic vesicles. FEBS Letters, 2008, 582, 3230-3236.	2.8	96
46	Membrane Organization and Ionization Behavior of the Minor but Crucial Lipid Ceramide-1-Phosphate. Biophysical Journal, 2008, 94, 4320-4330.	0.5	41
47	Ceramide-Enriched Membrane Domains in Red Blood Cells and the Mechanism of Sphingomyelinase-Induced Hotâ^Cold Hemolysis. Biochemistry, 2008, 47, 11222-11230.	2.5	55
48	Surface-active properties of the antitumour ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (edelfosine). Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1855-1860.	2.6	28
49	Triton X-100 Partitioning into Sphingomyelin Bilayers at Subsolubilizing Detergent Concentrations: Effect of Lipid Phase and a Comparison with Dipalmitoylphosphatidylcholine. Biophysical Journal, 2007, 93, 3504-3514.	0.5	46
50	Detergent-Resistant, Ceramide-Enriched Domains in Sphingomyelin/Ceramide Bilayers. Biophysical Journal, 2006, 90, 903-914.	0.5	141
51	Sphingosine Increases the Permeability of Model and Cell Membranes. Biophysical Journal, 2006, 90, 4085-4092.	0.5	65
52	Alkanes are not innocuous vehicles for hydrophobic reagents in membrane studies. Chemistry and Physics of Lipids, 2006, 139, 107-114.	3.2	10
53	Molecular associations and surface-active properties of short- and long-N-acyl chain ceramides. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1711, 12-19.	2.6	79
54	Different Effects of Long- and Short-Chain Ceramides on the Gel-Fluid and Lamellar-Hexagonal Transitions of Phospholipids: A Calorimetric, NMR, and X-Ray Diffraction Study. Biophysical Journal, 2005, 88, 3368-3380.	0.5	102

JESUS SOT

#	Article	IF	CITATIONS
55	Biophysics (and sociology) of ceramides Biochemical Society Symposia, 2005, 72, 177-188.	2.7	51
56	Triton X-100-Resistant Bilayers:Â Effect of Lipid Composition and Relevance to the Raft Phenomenon. Langmuir, 2002, 18, 2828-2835.	3.5	74