

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2159137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics. Molecular Plant, 2013, 6, 1769-1780.	8.3	1,107
2	Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology, 2008, 26, 1301-1308.	17.5	1,030
3	Rewiring of the Fruit Metabolome in Tomato Breeding. Cell, 2018, 172, 249-261.e12.	28.9	606
4	Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nature Genetics, 2014, 46, 714-721.	21.4	560
5	Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nature Communications, 2014, 5, 3438.	12.8	402
6	Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nature Communications, 2015, 6, 8635.	12.8	303
7	The Structure and Function of Major Plant Metabolite Modifications. Molecular Plant, 2019, 12, 899-919.	8.3	250
8	Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nature Communications, 2017, 8, 1975.	12.8	233
9	Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals. Nature Communications, 2016, 7, 12767.	12.8	224
10	Metabolite-based genome-wide association studies in plants. Current Opinion in Plant Biology, 2015, 24, 31-38.	7.1	204
11	Exploring the Diversity of Plant Metabolism. Trends in Plant Science, 2019, 24, 83-98.	8.8	203
12	Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5411-9.	7.1	165
13	Genetic analysis of the metabolome exemplified using a rice population. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20320-20325.	7.1	155
14	A Novel Polyamine Acyltransferase Responsible for the Accumulation of Spermidine Conjugates in <i>Arabidopsis</i> Seed Â. Plant Cell, 2009, 21, 318-333.	6.6	139
15	Spatio-temporal distribution and natural variation of metabolites in citrus fruits. Food Chemistry, 2016, 199, 8-17.	8.2	134
16	OsPT4 Contributes to Arsenate Uptake and Transport in Rice. Frontiers in Plant Science, 2017, 8, 2197.	3.6	116
17	Spatiotemporal Distribution of Phenolamides and the Genetics of Natural Variation of Hydroxycinnamoyl Spermidine in Rice. Molecular Plant, 2015, 8, 111-121.	8.3	112
18	Genome-wide Dissection of Co-selected UV-B Responsive Pathways in the UV-B Adaptation of Qingke. Molecular Plant, 2020, 13, 112-127.	8.3	106

Jie Luo

#	Article	IF	CITATIONS
19	Characterization and Metabolic Diversity of Flavonoids in Citrus Species. Scientific Reports, 2017, 7, 10549.	3.3	103
20	OsATX1 Interacts with Heavy Metal P1B-Type ATPases and Affects Copper Transport and Distribution. Plant Physiology, 2018, 178, 329-344.	4.8	96
21	Metaboliteâ€based genomeâ€wide association study enables dissection of the flavonoid decoration pathway of wheat kernels. Plant Biotechnology Journal, 2020, 18, 1722-1735.	8.3	94
22	Combining Quantitative Genetics Approaches with Regulatory Network Analysis to Dissect the Complex Metabolism of the Maize Kernel. Plant Physiology, 2016, 170, 136-146.	4.8	62
23	Control of Leaf Senescence by an MeOH-JasmonatesÂCascade that Is Epigenetically Regulated by OsSRT1 in Rice. Molecular Plant, 2016, 9, 1366-1378.	8.3	60
24	Domestication of Crop Metabolomes: Desired and Unintended Consequences. Trends in Plant Science, 2021, 26, 650-661.	8.8	60
25	Exploiting Natural Variation in Tomato to Define Pathway Structure and Metabolic Regulation of Fruit Polyphenolics in the Lycopersicum Complex. Molecular Plant, 2020, 13, 1027-1046.	8.3	56
26	Trichome regulator SIMIXTAâ€like directly manipulates primary metabolism in tomato fruit. Plant Biotechnology Journal, 2020, 18, 354-363.	8.3	50
27	Aromatic Decoration Determines the Formation of Anthocyanic Vacuolar Inclusions. Current Biology, 2017, 27, 945-957.	3.9	49
28	Development of a widely targeted volatilomics method for profiling volatilomes in plants. Molecular Plant, 2022, 15, 189-202.	8.3	49
29	Evolutionarily Distinct BAHD N-acyltransferases are Responsible for Natural Variation of Aromatic Amine Conjugates in Rice. Plant Cell, 2016, 28, tpc.00265.2016.	6.6	42
30	Comparative transcriptomics provides novel insights into the mechanisms of selenium tolerance in the hyperaccumulator plant Cardamine hupingshanensis. Scientific Reports, 2018, 8, 2789.	3.3	41
31	Measurement of metabolite variations and analysis of related gene expression in Chinese liquorice (Glycyrrhiza uralensis) plants under UV-B irradiation. Scientific Reports, 2018, 8, 6144.	3.3	39
32	Imprinted gene <i>OsFIE1</i> modulates rice seed development by influencing nutrient metabolism and modifying genome H3K27me3. Plant Journal, 2016, 87, 305-317.	5.7	37
33	The Tomato DOF Daily Fluctuations 1, TDDF1 acts as flowering accelerator and protector against various stresses. Scientific Reports, 2017, 7, 10299.	3.3	30
34	Natural variation in the <i>OsbZIP18</i> promoter contributes to branched hain amino acid levels in rice. New Phytologist, 2020, 228, 1548-1558.	7.3	30
35	A UV-B-responsive glycosyltransferase, OsUGT706C2, modulates flavonoid metabolism in rice. Science China Life Sciences, 2020, 63, 1037-1052.	4.9	30
36	Rice putative methyltransferase gene <i>OsTSD2</i> is required for root development involving pectin modification. Journal of Experimental Botany, 2016, 67, 5349-5362.	4.8	25

Jie Luo

#	Article	IF	CITATIONS
37	Metabolome Analysis of Multi-Connected Biparental Chromosome Segment Substitution Line Populations. Plant Physiology, 2018, 178, 612-625.	4.8	25
38	Comparative analysis of metabolome of rice seeds at three developmental stages using a recombinant inbred line population. Plant Journal, 2019, 100, 908-922.	5.7	24
39	OsTSD2 â€mediated cell wall modification affects ion homeostasis and salt tolerance. Plant, Cell and Environment, 2019, 42, 1503-1512.	5.7	22
40	Branched-chain amino acids regulate plant growth by affecting the homeostasis of mineral elements in rice. Science China Life Sciences, 2019, 62, 1107-1110.	4.9	17
41	Interaction between carbon metabolism and phosphate accumulation is revealed by a mutation of a cellulose synthase-like protein, CSLF6. Journal of Experimental Botany, 2015, 66, 2557-2567.	4.8	16

42 Novel Transcriptome Study and Detection of Metabolic Variations in UV-B-Treated Date Palm (Phoenix) Tj ETQq0 0 0 rgBT /Overlock 10

43	A simple and efficient cloning system for CRISPR/Cas9-mediated genome editing in rice. PeerJ, 2020, 8, e8491.	2.0	12
44	OsRLCK160 contributes to flavonoid accumulation and UV-B tolerance by regulating OsbZIP48 in rice. Science China Life Sciences, 2022, 65, 1380-1394.	4.9	11
45	Identification of a peroxisomal-targeted aldolase involved in chlorophyll biosynthesis and sugar metabolism in rice. Plant Science, 2016, 250, 205-215.	3.6	10
46	Integrative Metabolomic and Transcriptomic Analyses Reveal Metabolic Changes and Its Molecular Basis in Rice Mutants of the Strigolactone Pathway. Metabolites, 2020, 10, 425.	2.9	8
47	Comparative Metabolomics Reveals Two Metabolic Modules Affecting Seed Germination in Rice (Oryza) Tj ETQq1	1_0,78431 2.9	.4 rgBT /Ove
48	Integrated de novo Analysis of Transcriptional and Metabolic Variations in Salt-Treated Solenostemma argel Desert Plants. Frontiers in Plant Science, 2021, 12, 744699.	3.6	3
49	Spatio-temporal distribution of phenolamides and the genetics of natural variation of hydroxycinnamoyl spermidine in rice. Molecular Plant, 2014, , .	8.3	0