
Nandini Mondal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2159085/publications.pdf Version: 2024-02-01

Νανσινι Μονσαι

#	Article	IF	CITATIONS
1	Bone vascular niche E-selectin induces mesenchymal–epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nature Cell Biology, 2019, 21, 627-639.	10.3	160
2	von Willebrand factor self-association on platelet Gplb $\hat{I}\pm$ under hydrodynamic shear: effect on shear-induced platelet activation. Blood, 2010, 116, 3990-3998.	1.4	75
3	Silencing α1,3-Fucosyltransferases in Human Leukocytes Reveals a Role for FUT9 Enzyme during E-selectin-mediated Cell Adhesion. Journal of Biological Chemistry, 2013, 288, 1620-1633.	3.4	72
4	ST3Gal-4 is the primary sialyltransferase regulating the synthesis of E-, P-, and L-selectin ligands on human myeloid leukocytes. Blood, 2015, 125, 687-696.	1.4	70
5	Distinct human α(1,3)-fucosyltransferases drive Lewis-X/sialyl Lewis-X assembly in human cells. Journal of Biological Chemistry, 2018, 293, 7300-7314.	3.4	61
6	Using CRISPR-Cas9 to quantify the contributions of O-glycans, N-glycans and Glycosphingolipids to human leukocyte-endothelium adhesion. Scientific Reports, 2016, 6, 30392.	3.3	47
7	Glycoengineering of chimeric antigen receptor (CAR) T-cells to enforce E-selectin binding. Journal of Biological Chemistry, 2019, 294, 18465-18474.	3.4	35
8	Glycosphingolipids on Human Myeloid Cells Stabilize E-Selectin–Dependent Rolling in the Multistep Leukocyte Adhesion Cascade. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 718-727.	2.4	32
9	Lipoxin A ₄ inhibits immune cell binding to salivary epithelium and vascular endothelium. American Journal of Physiology - Cell Physiology, 2012, 302, C968-C978.	4.6	28
10	Optimizing human Treg immunotherapy by Treg subset selection and E-selectin ligand expression. Scientific Reports, 2018, 8, 420.	3.3	23
11	Distinct glycosyltransferases synthesize E-selectin ligands in human vs. mouse leukocytes. Cell Adhesion and Migration, 2013, 7, 288-292.	2.7	18
12	Antibodies from Lampreys as Smart Anti-Glycan Reagents (SAGRs): Perspectives on Their Specificity, Structure, and Glyco-genomics. Biochemistry, 2020, 59, 3111-3122.	2.5	16
13	Major differences in glycosylation and fucosyltransferase expression in low-grade versus high-grade bladder cancer cell lines. Glycobiology, 2021, 31, 1444-1463.	2.5	8
14	sLeX Expression Delineates Distinct Functional Subsets of Human Blood Central and Effector Memory T Cells. Journal of Immunology, 2020, 205, 1920-1932.	0.8	3