

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/21589/publications.pdf Version: 2024-02-01

IC RAV

#	Article	IF	CITATIONS
1	Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate. Ecotoxicology and Environmental Safety, 2019, 171, 26-36.	2.9	47
2	Nutraceutical applications of twenty-five species of rapid-growing green-microalgae as indicated by their antibacterial, antioxidant and mineral content. Algal Research, 2020, 47, 101878.	2.4	44
3	Silver nanoparticles synthesized using aqueous leaf extract of Ziziphus oenoplia (L.) Mill: Characterization and assessment of antibacterial activity. Journal of Photochemistry and Photobiology B: Biology, 2016, 163, 391-402.	1.7	42
4	Toxic heavy metals in human blood in relation to certain food and environmental samples in Kerala, South India. Environmental Science and Pollution Research, 2018, 25, 7946-7953.	2.7	37
5	Copper accumulation, localization and antioxidant response in Eclipta alba L. in relation to quantitative variation of the metal in soil. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	32
6	ARBUSCULAR MYCORRHIZAL FUNGI AND <i>PIRIFORMOSPORA INDICA </i> INDIVIDUALLY AND IN COMBINATION WITH <i>RHIZOBIUM </i> ON GREEN GRAM. Journal of Plant Nutrition, 2010, 33, 285-298.	0.9	27
7	Tropical rainforest vegetation, climate and sea level during the Pleistocene in Kerala, India. Quaternary International, 2010, 213, 2-11.	0.7	27
8	Bioprospecting of Three Rapid-Growing Freshwater Green Algae, Promising Biomass for Biodiesel Production. Bioenergy Research, 2019, 12, 680-693.	2.2	26
9	Biomass yield and biochemical profile of fourteen species of fast-growing green algae from eutrophic bloomed freshwaters of Kerala, South India. Biomass and Bioenergy, 2018, 119, 155-165.	2.9	21
10	Ecology and Diversity of Cyanobacteria in <i>Kuttanadu</i> Paddy Wetlands, Kerala, India. American Journal of Plant Sciences, 2015, 06, 2924-2938.	0.3	17
11	Arbuscular Mycorrhizal Fungi Associated with Green Gram in South India. Agronomy Journal, 2007, 99, 1260-1264.	0.9	16
12	Pseudomonas fluorescens R68 assisted enhancement in growth and fertilizer utilization of Amaranthus tricolor (L.). 3 Biotech, 2017, 7, 256.	1.1	16
13	Phytoplankton communities of eutrophic freshwater bodies (Kerala, India) in relation to the physicochemical water quality parameters. Environment, Development and Sustainability, 2021, 23, 259-290.	2.7	16
14	Experimental assessment of productivity, oil-yield and oil-profile of eight different common freshwater-blooming green algae of Kerala. Biocatalysis and Agricultural Biotechnology, 2016, 8, 270-277.	1.5	15
15	Native arbuscular mycorrhizal fungal isolates (<i>Funneliformis mosseae and Glomus) Tj ETQq1 1 0.784314 rg Agriculture, 2019, 55, 924-933.</i>	BT /Overlock 0.4	10 Tf 50 18 15
16	Biomass yield, oil productivity and fatty acid profile of Chlorella lobophora cultivated in diverse eutrophic wastewaters. Biocatalysis and Agricultural Biotechnology, 2017, 11, 338-344.	1.5	12
17	Experimental evaluation of the culture parameters for optimum yield of lipids and other nutraceutically valuable compounds in Chloroidium saccharophillum (Kruger) comb. Nov. Renewable Energy, 2020, 147, 1082-1097.	4.3	12
18	Heavy metal contamination in "chemicalized' green revolution banana fields in southern India. Environmental Science and Pollution Research, 2018, 25, 26874-26886.	2.7	11

J G Ray

#	Article	IF	CITATIONS
19	Algal associates and the evidence of cyanobacterial nitrogen fixation in the velamen roots of epiphytic orchids. Global Ecology and Conservation, 2020, 22, e00946.	1.0	10
20	Biomass Productivity and Fatty Acid Composition of Chlorella lobophora V M Andreyeva, a Potential Feed Stock for Biodiesel Production. American Journal of Plant Sciences, 2015, 06, 2453-2460.	0.3	10
21	Ecology and Diversity of Diatoms in Kuttanadu Paddy Fields in Relation to Soil Regions, Seasons and Paddy-Growth-Stages. Journal of Plant Studies, 2016, 5, 7.	0.3	9
22	Toxic content of certain commercially available fairness creams in Indian market. Cogent Medicine, 2018, 5, 1433104.	0.7	8
23	Chlorococcum humicola (Nageli) Rabenhorst as a Renewable Source of Bioproducts and Biofuel. Journal of Plant Studies, 2015, 5, 48.	0.3	7
24	Endophytic diversity of hanging velamen roots in the epiphytic orchid <i>Acampe praemorsa</i> . Plant Ecology and Diversity, 2018, 11, 649-661.	1.0	6
25	Applications of endophytic-fungal-isolates from velamen root of wild orchids in floriculture. Brazilian Journal of Biological Sciences, 2019, 6, 577-589.	0.2	6
26	Calcium Accumulation in Grasses in Relation to their Root Cation Exchange Capacity. Journal of Agronomy, 2010, 9, 70-74.	0.4	6
27	Beneficial Changes in Capsicum frutescens Due to Priming by Plant Probiotic Burkholderia spp Probiotics and Antimicrobial Proteins, 2019, 11, 519-525.	1.9	5
28	Ecology of Endomycorrhizal Association in Musa spp. of South India. Symbiosis, 2018, 74, 199-214.	1.2	4
29	Fertility Characteristics of Oxic Dystrustepts under Natural Forest, Rubber, and Teak Plantations in Different Seasons, Kerala, South India. Communications in Soil Science and Plant Analysis, 2012, 43, 2247-2261.	0.6	3
30	Nickel accumulation, localisation and the biochemical responses in <i>Eclipta prostrata</i> (L.) L. Soil and Sediment Contamination, 2019, 28, 81-100.	1.1	3
31	Assessment of Soil Fertility Characteristics of Chemical-Fertilized Banana Fields of South India. Communications in Soil Science and Plant Analysis, 2019, 50, 275-286.	0.6	2
32	An extinct species of <i>Basella</i> : pollen evidence from sediments (~80 ka) in Kerala, India. Grana, 2019, 58, 399-407.	0.4	1
33	Role of Perennial Grasses in Controlling Degradation of Soil Systems in Steppes. Soil & Environment, 1993, , 327-331.	0.0	1
34	Ecological relevance of the endophytic fungal diversity in velamen roots of tropical epiphytic orchids Czech Mycology, 2021, 73, 91-108.	0.2	0