
Hiromichi Hara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2158807/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nature Communications, 2019, 10, 3145.	12.8	303
2	Insufficient autophagy in idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L56-L69.	2.9	259
3	Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF. ^{î2} -induced senescence of human bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L391-L401.	2.9	257
4	PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy, 2015, 11, 547-559.	9.1	206
5	Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease. Oncolmmunology, 2012, 1, 630-641.	4.6	199
6	Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis. Journal of Extracellular Vesicles, 2015, 4, 28388.	12.2	187
7	Metformin attenuates lung fibrosis development via NOX4 suppression. Respiratory Research, 2016, 17, 107.	3.6	178
8	Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L737-L746.	2.9	167
9	PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy, 2019, 15, 510-526.	9.1	116
10	Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respiratory Investigation, 2016, 54, 397-406.	1.8	113
11	Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. Journal of Immunology, 2016, 197, 504-516.	0.8	102
12	Azithromycin attenuates myofibroblast differentiation and lung fibrosis development through proteasomal degradation of NOX4. Autophagy, 2017, 13, 1420-1434.	9.1	74
13	Pirfenidone inhibits myofibroblast differentiation and lung fibrosis development during insufficient mitophagy. Respiratory Research, 2017, 18, 114.	3.6	72
14	Mitochondrial Quality Control in COPD and IPF. Cells, 2018, 7, 86.	4.1	60
15	Involvement of Creatine Kinase B in Cigarette Smoke–Induced Bronchial Epithelial Cell Senescence. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 306-312.	2.9	47
16	Involvement of Creatine Kinase B in Hepatitis C Virus Genome Replication through Interaction with the Viral NS4A Protein. Journal of Virology, 2009, 83, 5137-5147.	3.4	42
17	Involvement of Lamin B1 Reduction in Accelerated Cellular Senescence during Chronic Obstructive Pulmonary Disease Pathogenesis. Journal of Immunology, 2019, 202, 1428-1440.	0.8	42
18	Regulated Necrosis in Pulmonary Disease. A Focus on Necroptosis and Ferroptosis. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 554-562.	2.9	42

Hiromichi Hara

#	Article	IF	CITATIONS
19	Efficacy of mepolizumab for patients with severe asthma and eosinophilic chronic rhinosinusitis. BMC Pulmonary Medicine, 2019, 19, 176.	2.0	40
20	Involvement of GPx4-Regulated Lipid Peroxidation in Idiopathic Pulmonary Fibrosis Pathogenesis. Journal of Immunology, 2019, 203, 2076-2087.	0.8	40
21	Risk factors of postoperative pulmonary complications in patients with asthma and COPD. BMC Pulmonary Medicine, 2018, 18, 4.	2.0	39
22	Increased levels of prostaglandin Eâ^major urinary metabolite (PGE-MUM) in chronic fibrosing interstitial pneumonia. Respiratory Medicine, 2017, 122, 43-50.	2.9	27
23	Interstitial Pneumonia in Psoriasis. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2018, 2, 370-377.	2.4	20
24	Chaperone-Mediated Autophagy Suppresses Apoptosis via Regulation of the Unfolded Protein Response during Chronic Obstructive Pulmonary Disease Pathogenesis. Journal of Immunology, 2020, 205, 1256-1267.	0.8	18
25	Successful treatment of steroid-refractory immune checkpoint inhibitor-related pneumonitis with triple combination therapy: a case report. Cancer Immunology, Immunotherapy, 2020, 69, 2033-2039.	4.2	13
26	Prostaglandin E-Major Urinary Metabolite (PGE-MUM) as a Tumor Marker for Lung Adenocarcinoma. Cancers, 2019, 11, 768.	3.7	12
27	Psoriasis-associated interstitial pneumonia. European Journal of Dermatology, 2018, 28, 395-396.	0.6	5
28	Characteristics of anti-IL-17/23 biologics-induced interstitial pneumonia in patients with psoriasis. PLoS ONE, 2021, 16, e0245284.	2.5	5
29	Azithromycin suppressed relapses of idiopathic nephrotic syndrome in a child. CKJ: Clinical Kidney Journal, 2018, 11, 54-55.	2.9	3
30	Possible relationship between esophageal dilatation and severity ofÂM. abscessus pulmonary disease. PLoS ONE, 2021, 16, e0261866.	2.5	3
31	Recurrent and persistent pneumonia. European Journal of Internal Medicine, 2018, 53, e8-e9.	2.2	2
32	Effect of antiâ€interleukinâ€17 biologics on Krebs von den Lungenâ€6 level in patients with psoriasis. Journal of Dermatology, 2021, 48, 886-893.	1.2	2
33	Dasatinib-induced Nonspecific Interstitial Pneumonia That Developed 7 Years after the Initiation of Dasatinib. Internal Medicine, 2020, 59, 2297-2300.	0.7	2
34	Macroscopic inflammatory tracheal and endobronchial nodules in Sjögren's syndrome. Thorax, 2017, 72, 864-865.	5.6	1
35	Pathogenesis of COPD 4 – Cell Death, Senescence, and Autophagy: Is There a Possibility of Developing New Drugs from the Standpoint of This Pathogenetic Mechanism?. Respiratory Disease Series, 2017, , 95-111.	0.0	1
36	Drug reaction or metastatic lung cancer?. Cleveland Clinic Journal of Medicine, 2017, 84, 914-915.	1.3	1