CÃ;tia Teixeira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2158162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design, Synthesis, and Biological Evaluation of <i>N</i> -Carboxyphenylpyrrole Derivatives as Potent HIV Fusion Inhibitors Targeting gp41. Journal of Medicinal Chemistry, 2008, 51, 7843-7854.	2.9	115
2	"Recycling―Classical Drugs for Malaria. Chemical Reviews, 2014, 114, 11164-11220.	23.0	104
3	Wound-Healing Peptides for Treatment of Chronic Diabetic Foot Ulcers and Other Infected Skin Injuries. Molecules, 2017, 22, 1743.	1.7	94
4	Falcipains, Plasmodium falciparum Cysteine Proteases as Key Drug Targets Against Malaria. Current Medicinal Chemistry, 2011, 18, 1555-1572.	1.2	79
5	Clinical Application of AMPs. Advances in Experimental Medicine and Biology, 2019, 1117, 281-298.	0.8	78
6	Molecular modeling studies of N-substituted pyrrole derivatives—Potential HIV-1 gp41 inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 3039-3048.	1.4	68
7	N-Cinnamoylated Chloroquine Analogues as Dual-Stage Antimalarial Leads. Journal of Medicinal Chemistry, 2013, 56, 556-567.	2.9	58
8	Viral surface glycoproteins, gp120 and gp41, as potential drug targets against HIV-1: Brief overview one quarter of a century past the approval of zidovudine, the first anti-retroviral drug. European Journal of Medicinal Chemistry, 2011, 46, 979-992.	2.6	52
9	Novel cinnamic acid/4-aminoquinoline conjugates bearing non-proteinogenic amino acids: Towards the development of potential dual action antimalarials. European Journal of Medicinal Chemistry, 2012, 54, 887-899.	2.6	50
10	Synthesis, characterization and catalytic studies of bis(chloro)dioxomolybdenum(VI)-chiral diimine complexes. Journal of Molecular Catalysis A, 2005, 236, 1-6.	4.8	45
11	PRIMACINS, N-cinnamoyl-primaquine conjugates, with improved liver-stage antimalarial activity. MedChemComm, 2012, 3, 1170.	3.5	35
12	Docking and 3D-QSAR studies of BMS-806 analogs as HIV-1 gp120 entry inhibitors. European Journal of Medicinal Chemistry, 2009, 44, 3524-3532.	2.6	34
13	ImmunoPEGliposomes for the targeted delivery of novel lipophilic drugs to red blood cells in a falciparum malaria murine model. Biomaterials, 2017, 145, 178-191.	5.7	34
14	Cinnamic Acid/Chloroquinoline Conjugates as Potent Agents against Chloroquineâ€Resistant <i>Plasmodium falciparum</i> . ChemMedChem, 2012, 7, 1537-1540.	1.6	32
15	In vitro efficiency of 9-(N-cinnamoylbutyl)aminoacridines against blood- and liver-stage malaria parasites. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 610-613.	1.0	31
16	Primaquine-based ionic liquids as a novel class of antimalarial hits. RSC Advances, 2016, 6, 56134-56138.	1.7	30
17	Harnessing snake venom phospholipases A ₂ to novel approaches for overcoming antibiotic resistance. Drug Development Research, 2019, 80, 68-85.	1.4	30
18	Flexible computational docking studies of new aminoglycosides targeting RNA 16S bacterial ribosome site. European Journal of Medicinal Chemistry, 2008, 43, 1648-1656.	2.6	26

CÃITIA TEIXEIRA

#	Article	IF	CITATIONS
19	<i>Nâ€</i> Cinnamoylation of Antimalarial Classics: Quinacrine Analogues with Decreased Toxicity and Dualâ€Stage Activity. ChemMedChem, 2014, 9, 305-310.	1.6	25
20	The Emerging Role of Ionic Liquid-Based Approaches for Enhanced Skin Permeation of Bioactive Molecules: A Snapshot of the Past Couple of Years. International Journal of Molecular Sciences, 2021, 22, 11991.	1.8	23
21	Cinnamic Acid Conjugates in the Rescuing and Repurposing of Classical Antimalarial Drugs. Molecules, 2020, 25, 66.	1.7	22
22	Promising Drug Targets and Compounds with Anti-Toxoplasma gondii Activity. Microorganisms, 2021, 9, 1960.	1.6	22
23	Inclusion complex formation of diferrocenyldimethylsilane with β-cyclodextrin. Journal of Organometallic Chemistry, 2005, 690, 4801-4808.	0.8	21
24	Effects of novel triple-stage antimalarial ionic liquids on lipid membrane models. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4190-4193.	1.0	21
25	Ionic Liquids for Topical Delivery in Cancer. Current Medicinal Chemistry, 2020, 26, 7520-7532.	1.2	21
26	Antimicrobial Peptides as Potential Anti-Tubercular Leads: A Concise Review. Pharmaceuticals, 2021, 14, 323.	1.7	19
27	Surfing the Third Wave of Ionic Liquids: A Brief Review on the Role of Surfaceâ€Active Ionic Liquids in Drug Development and Delivery. ChemMedChem, 2021, 16, 2604-2611.	1.6	19
28	Antiproliferative Organic Salts Derived from Betulinic Acid: Disclosure of an Ionic Liquid Selective Against Lung and Liver Cancer Cells. ACS Omega, 2019, 4, 5682-5689.	1.6	18
29	Acridine-Based Antimalarials—From the Very First Synthetic Antimalarial to Recent Developments. Molecules, 2021, 26, 600.	1.7	18
30	Peptides to Tackle Leishmaniasis: Current Status and Future Directions. International Journal of Molecular Sciences, 2021, 22, 4400.	1.8	18
31	Development of Plasmodium falciparum Protease Inhibitors in the Past Decade (2002–2012). Current Medicinal Chemistry, 2013, 20, 3049-3068.	1.2	18
32	Building on Surface-Active Ionic Liquids for the Rescuing of the Antimalarial Drug Chloroquine. International Journal of Molecular Sciences, 2020, 21, 5334.	1.8	17
33	Traditional and Computational Screening of Non-Toxic Peptides and Approaches to Improving Selectivity. Pharmaceuticals, 2022, 15, 323.	1.7	17
34	A Synergic Potential of Antimicrobial Peptides against Pseudomonas syringae pv. actinidiae. Molecules, 2021, 26, 1461.	1.7	14
35	Recycling antimalarial leads for cancer: Antiproliferative properties of N-cinnamoyl chloroquine analogues. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6769-6772.	1.0	13
36	"Clicking―an Ionic Liquid to a Potent Antimicrobial Peptide: On the Route towards Improved Stability. International Journal of Molecular Sciences, 2020, 21, 6174.	1.8	13

CÃitia Teixeira

#	Article	IF	CITATIONS
37	Molecular docking and 3D-quantitative structure activity relationship analyses of peptidyl vinyl sulfones: Plasmodium Falciparum cysteine proteases inhibitors. Journal of Computer-Aided Molecular Design, 2011, 25, 763-775.	1.3	12
38	<i>N</i> -Cinnamoylated Aminoquinolines as Promising Antileishmanial Agents. Antimicrobial Agents and Chemotherapy, 2013, 57, 5112-5115.	1.4	12
39	N innamoylation of Antimalarial Classics: Effects of Using Acyl Groups Other than Cinnamoyl toward Dual‧tage Antimalarials. ChemMedChem, 2015, 10, 1344-1349.	1.6	12
40	Turning a Collagenesis-Inducing Peptide Into a Potent Antibacterial and Antibiofilm Agent Against Multidrug-Resistant Gram-Negative Bacteria. Frontiers in Microbiology, 2019, 10, 1915.	1.5	12
41	A Quinacrine Analogue Selective Against Gastric Cancer Cells: Insight from Biochemical and Biophysical Studies. ChemMedChem, 2016, 11, 2703-2712.	1.6	11
42	How Insertion of a Single Tryptophan in the N-Terminus of a Cecropin A-Melittin Hybrid Peptide Changes Its Antimicrobial and Biophysical Profile. Membranes, 2021, 11, 48.	1.4	11
43	2D and 3D QSAR studies of diarylpyrimidine HIV-1 reverse transcriptase inhibitors. Journal of Computer-Aided Molecular Design, 2008, 22, 831-841.	1.3	10
44	Toward the discovery of inhibitors of babesipain-1, a Babesia bigemina cysteine protease: in vitro evaluation, homology modeling and molecular docking studies. Journal of Computer-Aided Molecular Design, 2013, 27, 823-835.	1.3	9
45	Cinnamic Derivatives as Antitubercular Agents: Characterization by Quantitative Structure–Activity Relationship Studies. Molecules, 2020, 25, 456.	1.7	9
46	Thiol–Norbornene Photoclick Chemistry for Grafting Antimicrobial Peptides onto Chitosan to Create Antibacterial Biomaterials. ACS Applied Polymer Materials, 2022, 4, 5012-5026.	2.0	9
47	In Vitro Evaluation of Five Antimicrobial Peptides against the Plant Pathogen Erwinia amylovora. Biomolecules, 2021, 11, 554.	1.8	8
48	Is the conformational flexibility of piperazine derivatives important to inhibit HIV-1 replication?. Journal of Molecular Graphics and Modelling, 2013, 44, 91-103.	1.3	7
49	Chloroquine Analogues as Leads against Pneumocystis Lung Pathogens. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	7
50	Neuroprotective effects on microglia and insights into the structure–activity relationship of an antioxidant peptide isolated from <i>Pelophylax perezi</i> . Journal of Cellular and Molecular Medicine, 2022, 26, 2793-2807.	1.6	7
51	4,9â€Diaminoacridines and 4â€Aminoacridines as Dualâ€Stage Antiplasmodial Hits. ChemMedChem, 2021, 16, 788-792.	1.6	6
52	The peptide secreted at the water to land transition in a model amphibian has antioxidant effects. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211531.	1.2	6
53	Drugâ€Derived Surfaceâ€Active Ionic Liquids: A Costâ€Effective Way To Expressively Increase the Bloodâ€Stage Antimalarial Activity of Primaquine. ChemMedChem, 2022, 17, .	1.6	6
54	Development of a synthetic route towards N4,N9-disubstituted 4,9-diaminoacridines: On the way to multi-stage antimalarials. Tetrahedron Letters, 2019, 60, 1166-1169.	0.7	5

CÃitia Teixeira

#	Article	IF	CITATIONS
55	Disclosure of a Promising Lead to Tackle Complicated Skin and Skin Structure Infections: Antimicrobial and Antibiofilm Actions of Peptide PP4-3.1. Pharmaceutics, 2021, 13, 1962.	2.0	5
56	Evaluation of Three Antimicrobial Peptides Mixtures to Control the Phytopathogen Responsible for Fire Blight Disease. Plants, 2021, 10, 2637.	1.6	4
57	Affinityâ€Triggered Assemblies Based on a Designed Peptide–Peptide Affinity Pair. Biotechnology Journal, 2019, 14, e1800559.	1.8	2
58	Molecular design aided by random forests and synthesis of potent trypanocidal agents as cruzain inhibitors for Chagas disease treatment. Chemical Biology and Drug Design, 2020, 96, 948-960.	1.5	1
59	Bioactivity of Ionic Liquids. RSC Smart Materials, 2017, , 404-422.	0.1	1
60	Back Cover: Cinnamic Acid/Chloroquinoline Conjugates as Potent Agents against Chloroquine-Resistant Plasmodium falciparum (ChemMedChem 9/2012). ChemMedChem, 2012, 7, 1692-1692.	1.6	0
61	Striking HIV-1 Entry by Targeting HIV-1 gp41. But, Where Should We Target?. PLoS ONE, 2016, 11, e0146743.	1.1	0
62	Collagen-like materials for tissue regeneration and repair. , 2018, , 283-307.		0
63	Only a "Click―Away: Development of Arginine-Rich Peptide-Based Materials Using Click Chemistry. Springer Protocols, 2020, , 37-51.	0.1	0
64	4,9-Diaminoacridines and 4-aminoacridines as antiplasmodial dual-stage hits. , 0, , .		0
65	Designing a new antimycobacterial peptide to tackle Mycobacterium avium . , 0, , .		0