
Juan C Pichel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2157800/publications.pdf Version: 2024-02-01

ILIAN C PICHEL

#	Article	IF	CITATIONS
1	A unified framework to improve the interoperability between HPC and Big Data languages and programming models. Future Generation Computer Systems, 2022, 134, 123-139.	4.9	1
2	Real-Time Focused Extraction of Social Media Users. IEEE Access, 2022, 10, 42607-42622.	2.6	0
3	Comparing Traditional and Neural Approaches for Detecting Health-Related Misinformation. Lecture Notes in Computer Science, 2021, , 78-90.	1.0	4
4	Reliability Prediction for Health-Related Content: A Replicability Study. Lecture Notes in Computer Science, 2021, , 47-61.	1.0	3
5	lgnis: An efficient and scalable multi-language Big Data framework. Future Generation Computer Systems, 2020, 105, 705-716.	4.9	3
6	Very Fast Tree: speeding up the estimation of phylogenies for large alignments through parallelization and vectorization strategies. Bioinformatics, 2020, 36, 4658-4659.	1.8	19
7	A Big Data Platform for Real Time Analysis of Signs of Depression in Social Media. International Journal of Environmental Research and Public Health, 2020, 17, 4752.	1.2	16
8	Sparse Matrix Classification on Imbalanced Datasets Using Convolutional Neural Networks. IEEE Access, 2019, 7, 82377-82389.	2.6	12
9	A Micromodule Approach for Building Real-Time Systems with Python-Based Models: Application to Early Risk Detection of Depression on Social Media. Lecture Notes in Computer Science, 2018, , 801-805.	1.0	2
10	Building Python-Based Topologies for Massive Processing of Social Media Data in Real Time. , 2018, , .		0
11	PASTASpark: multiple sequence alignment meets Big Data. Bioinformatics, 2017, 33, 2948-2950.	1.8	15
12	Perldoop2: A Big Data-Oriented Source-to-Source Perl-Java Compiler. , 2017, , .		3
13	SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data. PLoS ONE, 2016, 11, e0155461.	1.1	72
14	Boosting performance of a Statistical Machine Translation system using dynamic parallelism. Journal of Computational Science, 2016, 13, 37-48.	1.5	2
15	BigBWA: approaching the Burrows–Wheeler aligner to Big Data technologies. Bioinformatics, 2015, 31, 4003-4005.	1.8	107
16	Perldoop: Efficient execution of Perl scripts on Hadoop clusters. , 2014, , .		5
17	Hierarchically Tiled Array as a High-Level Abstraction for Codelets. , 2014, , .		2
18	A hardware counterâ€based toolkit for the analysis of memory accesses in SMPs. Concurrency Computation Practice and Experience, 2014, 26, 1328-1341.	1.4	1

JUAN C PICHEL

#	Article	IF	CITATIONS
19	Using sampled information: is it enough for the sparse matrix–vector product locality optimization?. Concurrency Computation Practice and Experience, 2014, 26, 98-117.	1.4	1
20	3DyRM: a dynamic roofline model including memory latency information. Journal of Supercomputing, 2014, 70, 696-708.	2.4	11
21	A flexible and dynamic page migration infrastructure based on hardware counters. Journal of Supercomputing, 2013, 65, 930-948.	2.4	1
22	Sparse matrix–vector multiplication on the Single-Chip Cloud Computer many-core processor. Journal of Parallel and Distributed Computing, 2013, 73, 1539-1550.	2.7	10
23	Hardware Counters Based Analysis of Memory Accesses in SMPs. , 2012, , .		1
24	Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor. , 2012, , .		1
25	Optimization of sparse matrix–vector multiplication using reordering techniques on GPUs. Microprocessors and Microsystems, 2012, 36, 65-77.	1.8	39
26	Analyzing the execution of sparse matrix-vector product on the Finisterrae SMP-NUMA system. Journal of Supercomputing, 2011, 58, 195-205.	2.4	4
27	Lessons Learnt Porting Parallelisation Techniques for Irregular Codes to NUMA Systems. , 2010, , .		0
28	A collective I/O implementation based on inspector–executor paradigm. Journal of Supercomputing, 2009, 47, 53-75.	2.4	7
29	On the Influence of Thread Allocation for Irregular Codes in NUMA Systems. , 2009, , .		1
30	Exploiting data compression in collective I/O techniques. , 2008, , .		3
31	Reordering Algorithms for Increasing Locality on Multicore Processors. , 2008, , .		16
32	Data Locality Aware Strategy for Two-Phase CollectiveÂI/O. Lecture Notes in Computer Science, 2008, , 137-149.	1.0	8
33	Image segmentation based on merging of sub-optimal segmentations. Pattern Recognition Letters, 2006, 27, 1105-1116.	2.6	49
34	Performance optimization of irregular codes based on the combination of reordering and blocking techniques. Parallel Computing, 2005, 31, 858-876.	1.3	21