Michelle L Brinkmeier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2157719/publications.pdf

Version: 2024-02-01

27 1,379 19
papers citations h-index

h-index g-index

32 1821
times ranked citing authors

580821

25

32 all docs

32 docs citations

#	Article	IF	CITATIONS
1	Rathke's cleft-like cysts arise from Isl1 deletion in murine pituitary progenitors. Journal of Clinical Investigation, 2020, 130, 4501-4515.	8.2	9
2	Single-Cell RNA Sequencing Reveals Novel Markers of Male Pituitary Stem Cells and Hormone-Producing Cell Types. Endocrinology, 2018, 159, 3910-3924.	2.8	112
3	Regulation of pituitary stem cells by epithelial to mesenchymal transition events and signaling pathways. Molecular and Cellular Endocrinology, 2017, 445, 14-26.	3.2	21
4	PROP1 triggers epithelial-mesenchymal transition-like process in pituitary stem cells. ELife, 2016, 5, .	6.0	55
5	Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocrine Reviews, 2016, 37, 636-675.	20.1	147
6	The Histone Methyltransferase Gene Absent, Small, or Homeotic Discs-1 Like Is Required for Normal Hox Gene Expression and Fertility in Mice1. Biology of Reproduction, 2015, 93, 121.	2.7	30
7	Lhx4 Deficiency: Increased Cyclin-Dependent Kinase Inhibitor Expression and Pituitary Hypoplasia. Molecular Endocrinology, 2015, 29, 597-612.	3.7	11
8	Gonadotrope-specific Deletion of Dicer Results in Severely Suppressed Gonadotropins and Fertility Defects. Journal of Biological Chemistry, 2015, 290, 2699-2714.	3.4	39
9	LINE-1 Mediated Insertion into Poc1a (Protein of Centriole 1 A) Causes Growth Insufficiency and Male Infertility in Mice. PLoS Genetics, 2015, 11, e1005569.	3.5	21
10	The Trithorax group gene Ash1l regulates quiescence, self-renewal potential and niche occupancy in adult hematopoietic stem cells. Experimental Hematology, 2014, 42, S28.	0.4	0
11	Pituitary Gland Development and Disease. Current Topics in Developmental Biology, 2013, 106, 1-47.	2.2	101
12	The Trithorax Group Protein Ash1l Is An Essential Epigenetic Regulator of Adult Hematopoietic Stem Cell Maintenance. Blood, 2011, 118, 387-387.	1.4	0
13	Corepressors TLE1 and TLE3 Interact with HESX1 and PROP1. Molecular Endocrinology, 2010, 24, 754-765.	3.7	23
14	Discovery of transcriptional regulators and signaling pathways in the developing pituitary gland by bioinformatic and genomic approaches. Genomics, 2009, 93, 449-460.	2.9	61
15	Genetics, Gene Expression and Bioinformatics of the Pituitary Gland. Hormone Research in Paediatrics, 2009, 71, 101-115.	1.8	11
16	WNT signaling affects gene expression in the ventral diencephalon and pituitary gland growth. Developmental Dynamics, 2008, 237, 1006-1020.	1.8	94
17	WNT signaling affects gene expression in the ventral diencephalon and pituitary gland growth. Developmental Dynamics, 2008, 237, spc1-spc1.	1.8	0
18	TCF4 deficiency expands ventral diencephalon signaling and increases induction of pituitary progenitors. Developmental Biology, 2007, 311, 396-407.	2.0	94

#	Article	IF	CITATIONS
19	Targeting a Complex Transcriptome: The Construction of the Mouse Full-Length cDNA Encyclopedia. Genome Research, 2003, 13, 1273-1289.	5.5	154
20	TCF and Groucho-Related Genes Influence Pituitary Growth and Development. Molecular Endocrinology, 2003, 17, 2152-2161.	3.7	97
21	Identification of members of the Wnt signaling pathway in the embryonic pituitary gland. Mammalian Genome, 2001, 12, 843-851.	2.2	63
22	Thyroid Hormone-Responsive Pituitary Hyperplasia Independent of Somatostatin Receptor 2. Molecular Endocrinology, 2001, 15, 2129-2136.	3.7	18
23	Thyroid hormone resistance and increased metabolic rate in the RXR-γ–deficient mouse. Journal of Clinical Investigation, 2000, 106, 73-79.	8.2	86
24	Thyroid Hormone Is Essential for Pituitary Somatotropes and Lactotropes*. Endocrinology, 1999, 140, 1884-1892.	2.8	48
25	Cell-Specific Expression of the Mouse Glycoprotein Hormone α-Subunit Gene Requires Multiple Interacting DNA Elements in Transgenic Mice and Cultured Cells. Molecular Endocrinology, 1998, 12, 622-633.	3.7	43
26	Genetic Mapping of 21 Genes on Mouse Chromosome 11 Reveals Disruptions in Linkage Conservation with Human Chromosome 5. Genomics, 1997, 40, 114-122.	2.9	24
27	Localization of Somatostatin Receptor Genes on Mouse Chromosomes 2, 11, 12, 15, and 17: Correlation with Growth QTLs. Genomics, 1997, 43, 9-14.	2.9	5