Masayuki Iwamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2157619/publications.pdf

Version: 2024-02-01

101 papers 1,815 citations

218677 26 h-index 265206 42 g-index

104 all docs

104 docs citations

times ranked

104

1153 citing authors

#	Article	IF	CITATIONS
1	Physical and Chemical Interplay Between the Membrane and a Prototypical Potassium Channel Reconstituted on a Lipid Bilayer Platform. Frontiers in Molecular Neuroscience, 2021, 14, 634121.	2.9	1
2	Conductance selectivity of Na $\langle \sup \rangle + \langle \sup \rangle$ across the K $\langle \sup \rangle + \langle \sup \rangle$ channel via Na $\langle \sup \rangle + \langle \sup \rangle$ trapped in a tortuous trajectory. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
3	Hysteresis of a Tension-Sensitive K ⁺ Channel Revealed by Time-Lapse Tension Measurements. Jacs Au, 2021, 1, 467-474.	7.9	6
4	Visualizing the osmotic water permeability of a lipid bilayer under measured bilayer tension using a moving membrane method. Journal of Membrane Science, 2021, 627, 119231.	8.2	2
5	Fluorescent labeling in sizeâ€controlled liposomes reveals membrane curvatureâ€induced structural changes in the KcsA potassium channel. FEBS Letters, 2021, 595, 1914-1919.	2.8	2
6	Geometrical and electrophysiological data of the moving membrane method for the osmotic water permeability of a lipid bilayer. Data in Brief, 2021, 38, 107309.	1.0	1
7	Single-Molecule Twisting Motions During Gating of the Human TRPV1 Channel Recorded with Sub-Millisecond Time Resolution. Biophysical Journal, 2020, 118, 22a.	0.5	O
8	Drop-in-well chamber for droplet interface bilayer with built-in electrodes. Methods in Enzymology, 2019, 621, 347-363.	1.0	2
9	In bulla functional channel expression systems that mimic bacterial synthetic membranes. Methods in Enzymology, 2019, 621, 231-244.	1.0	2
10	Lipid Bilayer Experiments with Contact Bubble Bilayers for Patch-Clampers. Journal of Visualized Experiments, $2019, \ldots$	0.3	6
11	Microfabricated Solution Chamber for High Resolution Diffracted X-Ray Tracking Method to Observe Ion-Channel Gating Motion. , 2019, , .		O
12	Thylakoid membranes contain a non-selective channel permeable to small organic molecules. Journal of Biological Chemistry, 2018, 293, 7777-7785.	3.4	3
13	Lipid Bilayers Manipulated through Monolayer Technologies for Studies of Channel-Membrane Interplay. Biological and Pharmaceutical Bulletin, 2018, 41, 303-311.	1.4	13
14	Concurrent <i>In Vitro</i> Synthesis and Functional Detection of Nascent Activity of the KcsA Channel under a Membrane Potential. ACS Synthetic Biology, 2018, 7, 1004-1011.	3.8	3
15	Constitutive boost of a K ⁺ channel via inherent bilayer tension and a unique tension-dependent modality. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13117-13122.	7.1	19
16	Channel Formation and Membrane Deformation via Sterol-Aided Polymorphism of Amphidinol 3. Scientific Reports, 2017, 7, 10782.	3.3	17
17	Membrane Perfusion of Hydrophobic Substances Around Channels Embedded in the Contact Bubble Bilayer. Scientific Reports, 2017, 7, 6857.	3.3	13
18	Contact Bubble Bilayer Method as a Hybrid of the Planar Lipid Bilayer and Patch-clamp Methods. Seibutsu Butsuri, 2017, 57, 313-317.	0.1	0

#	Article	IF	CITATIONS
19	Rectified Proton Grotthuss Conduction Across a Long Water-Wire in the Test Nanotube of the Polytheonamide B Channel. Journal of the American Chemical Society, 2016, 138, 4168-4177.	13.7	39
20	Mechanism for attenuated outward conductance induced by mutations in the cytoplasmic pore of Kir2.1 channels. Scientific Reports, 2015, 5, 18404.	3.3	7
21	Structure and Dynamics of Membrane-embedded KcsA Potassium Channel Revealed by Atomic Force Microscopy. Seibutsu Butsuri, 2015, 55, 005-010.	0.1	2
22	Contact Bubble Bilayers with Flush Drainage. Scientific Reports, 2015, 5, 9110.	3.3	43
23	pH-dependent promotion of phospholipid flip-flop by the KcsA potassium channel. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 145-150.	2.6	4
24	Gating-Associated Clustering–Dispersion Dynamics of the KcsA Potassium Channel in a Lipid Membrane. Journal of Physical Chemistry Letters, 2014, 5, 578-584.	4.6	34
25	Gating-Coupled Clustering-Dispersion Dynamics of the KcsA Potassium Channel in a Lipid Membrane. Biophysical Journal, 2014, 106, 746a.	0.5	0
26	3P021 The Enhancement of Structural Fluctuations Prior to The Opening Conformational Changes of The KcsA Potassium Channel(01B. Protein: Structure & Enp.; Function, Poster, The 52nd Annual Meeting) Tj ETQq0	OoOonrgBT/0	Døerlock 10
27	1P221 Gating-associated clustering-dispersion dynamics of the KcsA potassium channel in a lipid membrane environment(13C. Biological & Artificial membrane: Excitation & Channels,Poster,The 52nd) Tj ETQq1	. 0. 78431	40 ^r gBT /Over
28	2SEA-05 How do lipids regulate the gating activity of the channel protein?: Mechanism of a novel type of the lipid sensor(2SEA Which is important for biophysicists, pump or channel?, Symposium, The 52nd) Tj ETQq0 (0.1 gBT/C	Oværlock 10 1
29	Paradoxical One-ion Pore Behavior of the Long \hat{I}^2 -Helical Peptide of Marine Cytotoxic Polytheonamide B. Scientific Reports, 2014, 4, 3636.	3.3	15
30	Amphipathic antenna of an inward rectifier K ⁺ channel responds to changes in the inner membrane leaflet. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 749-754.	7.1	68
31	The Sensing Sites for the Membrane Inner Lipids Regulate the Activation Gating of the KcsA Potassium Channel. Biophysical Journal, 2013, 104, 128a.	0.5	0
32	Biased Brownian stepping rotation of FoF1-ATP synthase driven by proton motive force. Nature Communications, 2013, 4, 1631.	12.8	41
33	2P221 Rolling of N-terminal amphipathic helix on the anionic inner membrane leaflet stabilizes the open state of the KcsA potassium channel(13C. Biological & Discrete Section 2 (13C) amp; Artifical membrane: Excitation & Discrete Section 2 (13C) To ETQq1	100178431	. 4 orgBT /Ove
34	3P030 The Refinement of the Diffracted X-ray Tracking Method for Recording the Single-Molecule Motions of Proteins with Higher Time Resolution(01A. Protein: Structure, Poster). Seibutsu Butsuri, 2013, 53, S216.	0.1	0
35	2SCA-01 Gating-related clustering-dispersion dynamics of the KcsA potassium channel on the membrane (2SCA Single Ion Channels updated: From elementary processes to disease) Tj ETQq1 1 0.784314 rgBT 2013. 53. S93.	Oyerlock	2 1 0 Tf 50 10
36	The Open Gate Structure of the Membrane-Embedded KcsA Potassium Channel Viewed From the Cytoplasmic Side. Scientific Reports, 2013, 3, 1063.	3.3	28

#	Article	IF	CITATIONS
37	3PT164 Identification of the interaction site with the effective phospholipids for the KcsA potassium channel activity(The 50th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2012, 52, S169.	0.1	0
38	2SH-01 Analysis of Single Molecular Gating Dynamics of the KcsA Potassium Channels Responding to Rapid Changes of Solutior Conditions(2SH Star of life shined by frontier microscopies,Symposium,The) Tj ETQq0 0	0.1 gBT /O	værlock 10 1
39	2G1558 Direct Observation of Ion Entryway of Potassium Channel KcsA in Lipid Bilayer by Atomic Force Microscopy(Biological & Artificial Membranes,Oral Presentation,The 50th Annual Meeting of the) Tj ETQq1 1 0.784	1 8.1 14 rgBT	∕ © verlock 1
40	Laser-Triggered Single Molecular Gating Motions of the KcsA Potassium Channels Recorded in a Sub-Millisecond Time Resolution. Biophysical Journal, 2012, 102, 37a.	0.5	1
41	The Asymmetric Lipid Bilayer Revealed Sidedness of the Effective Phospholipids on the Single-Channel Properties of the KcsA Potassium Channel. Biophysical Journal, 2012, 102, 537a.	0.5	0
42	Oriented Reconstitution of a Membrane Protein in a Giant Unilamellar Vesicle: Experimental Verification with the Potassium Channel KcsA. Journal of the American Chemical Society, 2011, 133, 11774-11779.	13.7	104
43	Cycle Flux Algebra for Ion and Water Flux through the KcsA Channel Single-File Pore Links Microscopic Trajectories and Macroscopic Observables. PLoS ONE, 2011, 6, e16578.	2.5	17
44	3A1124 Oriented reconstitution of a potassium channel KcsA in a giant unilamellar vesicle(3A Biol &) Tj ETQq0 0 0 Seibutsu Butsuri, 2011, 51, S105.		erlock 10 Tf O
45	2SH-07 Tracking the Motions of Single Potassium Channels by Time resolved X-ray Diffraction(2SH New) Tj ETQq1		14 rgBT /Ov O
46	3A1036 Effects of lipid bilayer components on the gating of the KcsA potassium channel (3A Biol & Artifi) Tj ETQq0 Butsuri, 2011, 51, S105.	_	Overlock 10
47	3A1048 Mechanism of the Open Pore Selectivity of the KcsA Potassium Channel: Na^+ trapping in the filter(3A Biol & Discourse amp; Artifi memb 3: Excitation & Discourse April 20.7843	b4 1rgBT /0	Overlock 10
48	3A1148 Envisioning the ion permeation through the KcsA potassium channel as queues of ion and water arrays(3A Biol & Artifi memb 3: Excitation & Channels,The 49th Annual Meeting of the Biophysical) Tj ETQq0	0.0 rgBT /	O verlock 10
49	Counting Ion and Water Molecules in a Streaming File through the Open-Filter Structure of the K Channel. Journal of Neuroscience, 2011, 31, 12180-12188.	3.6	52
50	A cytotoxic peptide from a marine sponge exhibits ion channel activity through vectorialâ€insertion into the membrane. FEBS Letters, 2010, 584, 3995-3999.	2.8	46
51	3P239 A novel unusual peptide forms monovalent cation-selective pore through vectorial membrane insertion(Biol & Artifi memb.: Excitation & Channels,The 48th Annual Meeting of the Biophysical) Tj ETQq1 1 0.784	l @114 rgBT	∕ © verlock 1
52	A mesoscopic approach to understanding the mechanisms underlying the ion permeation on the discrete-state diagram. Journal of General Physiology, 2010, 136, 363-365.	1.9	10
53	pH-Dependent Gating of KcsA Potassium Channel. Biophysical Journal, 2010, 98, 314a.	0.5	О
54	A Cytotoxic Peptide from a Marine Sponge, Polytheonamide B; II. Properties for Ion Conduction and Voltage Dependent Gating. Biophysical Journal, 2010, 98, 109a.	0.5	0

#	Article	IF	Citations
55	A Cytotoxic Peptide from a Marine Sponge, Polytheonamide B: I. Channel Activity and Vectorial-Insertion Into the Membrane. Biophysical Journal, 2010, 98, 110a.	0.5	1
56	1P-194 Conformational Changes of Single-Molecular KcsA Potassium Channels during Gating Recorded in a Sub-Millisecond Time Resolution(Biol & Discrete Sub-Millisecond Time Resolution (Biol & Discrete Sub-Millisecond Time Resolution (B	r gBT /Ove	rl o ck 10 Tf 5
57	The Water-ion Coupling Ratio for Ion Permeation through the KcsA Potassium Channel: Dependencies on Concentration and Species of Permeating Ions. Biophysical Journal, 2009, 96, 179a.	0.5	0
58	3P-187 Steady state distribution of ion and water in the open structure of KcsA potassium channel evaluated by the streaming potential (Biol & Distribution	rg &T /Ove	rloock 10 Tf 50
59	2SP5-05 Single-molecular measurements for structural and functional fluctuations of KcsA potassium channel.(2SP5 How are biological molecules fluctuating?,The 47th Annual Meeting of the) Tj ETQq1 1	0. Ø8 4314	rgBT /Overlo
60	1P-193 pH-dependent gating of KcsA potassium channel examined by using an "inactivation-free" mutant, E71A(Biol & Artifi memb.:Excitation & Channels, The 47th Annual Meeting of the Biophysical Society of) Tj ETQq0	0001rgBT /	'Overlock 10
61	A Long-Lived M-Like State of Phoborhodopsin that Mimics the Active State. Biophysical Journal, 2008, 95, 753-760.	0.5	10
62	Global Twisting Motion of Single Molecular KcsA Potassium Channel upon Gating. Cell, 2008, 132, 67-78.	28.9	111
63	Structural Changes in the O-Decay Accelerated Mutants of <i>pharaonis</i> Phoborhodopsin. Biochemistry, 2008, 47, 2866-2874.	2.5	5
64	3P-204 Water-ion coupling in ion permeation through KcsA potassium channel revealed by streaming potential measurements(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S159.	0.1	0
65	3P-205 Visualization of conformational changes of single molecular KcsA potassium channels revealed global twisting motions upon gating (The 46th Annual Meeting of the Biophysical Society of) Tj ETQq1 1	0 7.8 4314	r g BT /Overlo
66	3P-209 Temperature-dependence of Proton Permeation through a Voltage-Gated Proton Channel(The) Tj ETQq0 (0 orgBT /C)verlock 10 T
67	Normal Mode Analysis of Polytheonamide B. Journal of the Physical Society of Japan, 2007, 76, 094801.	1.6	4
68	Pharaonis Phoborhodopsin Binds to its Cognate Truncated Transducer Even in the Presence of a Detergent with a 1:1 Stoichiometry¶. Photochemistry and Photobiology, 2007, 74, 489-494.	2.5	0
69	Interaction of Natronobacterium pharaonis Phoborhodopsin (Sensory Rhodopsin II) with its Cognate Transducer Probed by Increase in the Thermal Stability¶. Photochemistry and Photobiology, 2007, 78, 511-516.	2.5	1
70	Participation of the Surface Structure of Pharaonis Phoborhodopsin, ppR and its A149S and A149V mutants, Consisting of the C-terminal α-helix and E-F Loop, in the Complex-formation with the Cognate Transducer pHtrll, as Revealed by Site-directed 13C Solid. Photochemistry and Photobiology, 2007, 83, 339-345.	2.5	14
71	Importance of Specific Hydrogen Bonds of Archaeal Rhodopsins for the Binding to the Transducer Protein. Journal of Molecular Biology, 2006, 357, 1274-1282.	4.2	47
72	1P368 Changes in surface exposing sites of the KcsA potassium channel upon active gating: Effect of a channel blocker, tetrabutylammonium (TBA)(14. Ion channels and receptors,Poster) Tj ETQq0 0 0 rgBT /Overlock	1 0.1 if 50 5	7a√d (Sessioi

#	Article	IF	CITATIONS
73	1P374 Normal Mode Analysis of a Small Membrane Polypeptide(14. Ion channels and receptors,Poster) Tj ETQq1	1 8.78431	4 ₀ gBT /Ove
74	1P375 Single-molecular gating dynamics of KcsA potassium channel measured by diffracted X-ray tracking(14. Ion channels and receptors,Poster Session,Abstract,Meeting Program of EABS & BSJ) Tj ETQq0 C) @ngBT /O	v e rlock 10 T
75	Surface Structure and Its Dynamic Rearrangements of the KcsA Potassium Channel upon Gating and Tetrabutylammonium Blocking. Journal of Biological Chemistry, 2006, 281, 28379-28386.	3.4	54
76	Correlation of the O-Intermediate Rate with the pKa of Asp-75 in the Dark, the Counterion of the Schiff Base of Pharaonis Phoborhodopsin (Sensory Rhodopsin II). Biophysical Journal, 2005, 88, 1215-1223.	0.5	26
77	Transient movement of helix F revealed by photo-induced inactivation by reaction of a bulky SH-reagent to cysteine-introduced pharaonis phoborhodopsin (sensory rhodopsin II). Photochemical and Photobiological Sciences, 2004, 3, 537.	2.9	21
78	Role of Charged Residues ofpharaonisPhoborhodopsin (Sensory Rhodopsin II) in Its Interaction with the Transducer Proteinâ€. Biochemistry, 2004, 43, 13748-13754.	2.5	16
79	Role of Arg-72 of pharaonis Phoborhodopsin (Sensory Rhodopsin II) on its Photochemistry. Biophysical Journal, 2004, 86, 3112-3120.	O.5	8
80	Proton Transfer Reactions in the F86D and F86E Mutants ofpharaonisPhoborhodopsin (Sensory) Tj ETQq0 0 0 rgE	T_lOverloc	k ₁₄ 0 Tf 50 4
81	Importance of the Broad Regional Interaction for Spectral Tuning in Natronobacterium pharaonis Phoborhodopsin (Sensory Rhodopsin II). Journal of Biological Chemistry, 2003, 278, 23882-23889.	3.4	50
82	Arg-72 of pharaonis Phoborhodopsin (Sensory Rhodopsin II) is Important for the Maintenance of the Protein Structure in the Solubilized State¶. Photochemistry and Photobiology, 2003, 77, 96-100.	2.5	0
83	Arg-72 of pharaonis Phoborhodopsin (Sensory Rhodopsin II) is Important for the Maintenance of the Protein Structure in the Solubilized State¶. Photochemistry and Photobiology, 2003, 77, 96.	2.5	20
84	Interaction of Natronobacterium pharaonis Phoborhodopsin (Sensory Rhodopsin II) with its Cognate Transducer Probed by Increase in the Thermal Stability¶. Photochemistry and Photobiology, 2003, 78, 511.	2.5	37
85	Association of pharaonis phoborhodopsin with its cognate transducer decreases the photo-dependent reactivity by water-soluble reagents of azide and hydroxylamine. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1558, 63-69.	2.6	30
86	Tyr-199 and Charged Residues of pharaonis PhoborhodopsinAre Important for the Interaction with its Transducer. Biophysical Journal, 2002, 83, 427-432.	0.5	38
87	Role of Asp193 in Chromophore-Protein Interaction of pharaonis Phoborhodopsin (Sensory Rhodopsin) Tj ETQq1	1 0.78431	4 rgBT /Ove
88	FTIR Spectroscopy of the M Photointermediate in pharaonis Phoborhodopsin. Biophysical Journal, 2002, 83, 3482-3489.	0.5	43
89	Association between a photo-intermediate of a M-lacking mutant D75N of pharaonis phoborhodopsin and its cognate transducer. Journal of Photochemistry and Photobiology B: Biology, 2002, 67, 171-176.	3.8	17

Illumination Accelerates the Decay of the O-intermediate of pharaonis Phoborhodopsin (Sensory) Tj ETQq0 0 0 rgBT $\frac{1}{2}$ Overlock 10 Tf 50 of $\frac{1}{2}$

90

#	Article	IF	CITATIONS
91	Illumination Accelerates the Decay of the O-intermediate of pharaonis Phoborhodopsin (Sensory) Tj ETQq1 1 0.78	4314 rgBT 2.5	∫gOverlock
92	Photo-Induced Proton Transport of Pharaonis Phoborhodopsin (Sensory Rhodopsin II) Is Ceased by Association with the Transducer. Biophysical Journal, 2001, 80, 916-922.	0.5	102
93	Selective reaction of hydroxylamine with chromophore during the photocycle of pharaonis phoborhodopsin. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1514, 152-158.	2.6	24
94	Environment around the chromophore in pharaonis phoborhodopsin: mutation analysis of the retinal binding site. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1515, 92-100.	2.6	72
95	Structural Changes of pharaonis Phoborhodopsin upon Photoisomerization of the Retinal Chromophore:  Infrared Spectral Comparison with Bacteriorhodopsin. Biochemistry, 2001, 40, 9238-9246.	2.5	104
96	Pharaonis Phoborhodopsin Binds to its Cognate Truncated Transducer Even in the Presence of a Detergent with a 1:1 Stoichiometry¶. Photochemistry and Photobiology, 2001, 74, 489.	2.5	51
97	Involvement of two groups in reversal of the bathochromic shift of pharaonis phoborhodopsin by chloride at low pH. Biophysical Chemistry, 2000, 87, 225-230.	2.8	31
98	Effects of Three Characteristic Amino Acid Residues of Pharaonis Phoborhodopsin on the Absorption Maximum ¶. Photochemistry and Photobiology, 2000, 72, 141-145.	2.5	29
99	Positioning proton-donating residues to the Schiff-base accelerates the M-decay of pharaonis phoborhodopsin expressed in Escherichia coli. Biophysical Chemistry, 1999, 79, 187-192.	2.8	38
100	Light-Induced Proton Uptake and Release ofpharaonisPhoborhodopsin Detected by a Photoelectrochemical Cell. Journal of Physical Chemistry B, 1999, 103, 10311-10315.	2.6	35
101	Functional expression of pharaonis phoborhodopsin in Eschericha coli. FEBS Letters, 1997, 420, 54-56.	2.8	121