Trevor A Day

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2157493/publications.pdf

Version: 2024-02-01

80 papers 5,594 citations

39 h-index 76900 74 g-index

80 all docs 80 docs citations

80 times ranked 4354 citing authors

#	Article	IF	CITATIONS
1	Does exposure to chronic stress influence blood pressure in rats?. Autonomic Neuroscience: Basic and Clinical, 2013, 177, 217-223.	2.8	18
2	Chronic Stress Induced Remodeling of the Prefrontal Cortex: Structural Re-Organization of Microglia and the Inhibitory Effect of Minocycline. Cerebral Cortex, 2013, 23, 1784-1797.	2.9	253
3	Purity and Enrichment of Laser-Microdissected Midbrain Dopamine Neurons. BioMed Research International, 2013, 2013, 1-8.	1.9	11
4	Evidence that Microglia Mediate the Neurobiological Effects of Chronic Psychological Stress on the Medial Prefrontal Cortex. Cerebral Cortex, 2012, 22, 1442-1454.	2.9	358
5	A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain, Behavior, and Immunity, 2012, 26, 469-479.	4.1	295
6	Fluoxetine prevents development of an early stress-related molecular signature in the rat infralimbic medial prefrontal cortex. Implications for depression?. BMC Neuroscience, 2012, 13, 125.	1.9	29
7	Voluntary exercise does not affect stressâ€induced tachycardia, but improves resistance to cardiac arrhythmias in rats. Clinical and Experimental Pharmacology and Physiology, 2011, 38, 19-26.	1.9	9
8	The Effect of Social Defeat on Tyrosine Hydroxylase Phosphorylation in the Rat Brain and Adrenal Gland. Neurochemical Research, 2011, 36, 27-33.	3.3	13
9	Repeated Social Defeat Selectively Increases ÂFosB Expression and Histone H3 Acetylation in the Infralimbic Medial Prefrontal Cortex. Cerebral Cortex, 2011, 21, 262-271.	2.9	59
10	Metyrapone and fluoxetine suppress enduring behavioral but not cardiac effects of subchronic stress in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1123-R1131.	1.8	10
11	Respiratory pattern in awake rats: Effects of motor activity and of alerting stimuli. Physiology and Behavior, 2010, 101, 22-31.	2.1	72
12	Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain, Behavior, and Immunity, 2010, 24, 1058-1068.	4.1	436
13	Ability of predator odour exposure to elicit conditioned versus sensitised post traumatic stress disorder-like behaviours, and forebrain î"FosB expression, in rats. Neuroscience, 2010, 169, 733-742.	2.3	38
14	Strain differences in coping behaviour, novelty seeking behaviour, and susceptibility to socially conditioned fear: A comparison between Wistar and Sprague Dawley rats. Stress, 2009, 12, 507-516.	1.8	18
15	Blockade of 5-HT2A receptors suppresses hyperthermic but not cardiovascular responses to psychosocial stress in rats. Neuroscience, 2009, 159, 1185-1191.	2.3	17
16	Coping with defeat: acute glucocorticoid and forebrain responses to social defeat vary with defeat episode behaviour. Neuroscience, 2009, 162, 244-253.	2.3	51
17	Individual differences predict susceptibility to conditioned fear arising from psychosocial trauma. Journal of Psychiatric Research, 2008, 42, 371-383.	3.1	22
18	More appraisal please: A commentary on Pfaff et al. (2007) "Relations between mechanisms of CNS arousal and mechanisms of stressâ€. Stress, 2007, 10, 311-313.	1.8	12

#	Article	IF	CITATIONS
19	A method for tracking rats in a complex and completely dark environment using computerized video analysis. Journal of Neuroscience Methods, 2006, 158, 279-286.	2.5	19
20	Medial prefrontal cortex control of the paraventricular hypothalamic nucleus response to psychological stress: Possible role of the bed nucleus of the stria terminalis. Journal of Comparative Neurology, 2005, 481, 363-376.	1.6	151
21	Defining stress as a prelude to mapping its neurocircuitry: No help from allostasis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2005, 29, 1195-1200.	4.8	108
22	Differential involvement of rat medial prefrontal cortex dopamine receptors in modulation of hypothalamic- pituitary-adrenal axis responses to different stressors. European Journal of Neuroscience, 2004, 20, 1008-1016.	2.6	31
23	A critical role for the parabrachial nucleus in generating central nervous system responses elicited by a systemic immune challenge. Journal of Neuroimmunology, 2004, 152, 20-32.	2.3	27
24	Thalamic paraventricular nucleus lesions facilitate central amygdala neuronal responses to acute psychological stress. Brain Research, 2004, 997, 234-237.	2.2	93
25	Hypothalamic paraventricular nucleus neurons regulate medullary catecholamine cell responses to restraint stress. Journal of Comparative Neurology, 2004, 478, 22-34.	1.6	46
26	Role of catecholaminergic inputs to the medial prefrontal cortex in local and subcortical expression of Fos after psychological stress. Journal of Neuroscience Research, 2004, 78, 279-288.	2.9	24
27	Effect of naloxone-precipitated morphine withdrawal on c-fos expression in rat corticotropin-releasing hormone neurons in the paraventricular hypothalamus and extended amygdala. Neuroscience Letters, 2004, 362, 39-43.	2.1	27
28	Evidence that the bed nucleus of the stria terminalis contributes to the modulation of hypophysiotropic corticotropinâ€releasing factor cell responses to systemic interleukinâ€lβ. Journal of Comparative Neurology, 2003, 467, 232-242.	1.6	58
29	Medial prefrontal cortex suppression of the hypothalamic-pituitary-adrenal axis response to a physical stressor, systemic delivery of interleukin- $1\hat{l}^2$. European Journal of Neuroscience, 2003, 17, 1473-1481.	2.6	41
30	Systemic apomorphine alters HPA axis responses to interleukin- $\hat{l^2}$ adminstration but not sound stress. Psychoneuroendocrinology, 2003, 28, 715-732.	2.7	9
31	Descending pathways from the paraventricular nucleus contribute to the recruitment of brainstem nuclei following a systemic immune challenge. Neuroscience, 2003, 118, 189-203.	2.3	44
32	Catecholamine and oxytocin cells respond to hypovolaemia as well as hypotension. NeuroReport, 2003, 14, 1493-1495.	1.2	12
33	Systemic administration of interleukin-1? activates select populations of central amygdala afferents. Journal of Comparative Neurology, 2002, 452, 288-296.	1.6	48
34	Opposing roles for medial and central amygdala in the initiation of noradrenergic cell responses to a psychological stressor. European Journal of Neuroscience, 2002, 15, 1712-1718.	2.6	64
35	Dorsal and Ventral Medullary Catecholamine Cell Groups Contribute Differentially to Systemic Interleukin- $1\hat{1}^2$ -Induced Hypothalamic Pituitary Adrenal Axis Responses. Neuroendocrinology, 2001, 73, 129-138.	2.5	87
36	Medullary neurones regulate hypothalamic corticotropin-releasing factor cell responses to an emotional stressor. Neuroscience, 2001, 105, 707-719.	2.3	82

#	Article	IF	Citations
37	Peripheral withdrawal recruits distinct central nuclei in morphine-dependent rats. Neuropharmacology, 2001, 41, 574-581.	4.1	23
38	Effects of Chronic Oestrogen Replacement on Stress-Induced Activation of Hypothalamic-Pituitary-Adrenal Axis Control Pathways. Journal of Neuroendocrinology, 2001, 12, 784-794.	2.6	87
39	Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. European Journal of Neuroscience, 2001, 14, 1143-1152.	2.6	431
40	Opposite effects of short and continuous oestradiol replacement on CNS responses to hypoxic stress. NeuroReport, 2000, 11 , 2243 - 2246 .	1.2	3
41	Neuroendocrine responses to an emotional stressor: evidence for involvement of the medial but not the central amygdala. European Journal of Neuroscience, 1999, 11, 2312-2322.	2.6	267
42	Differential recruitment of hypothalamic neuroendocrine and ventrolateral medulla catecholamine cells by non-hypotensive and hypotensive hemorrhages. Brain Research, 1999, 834, 42-54.	2.2	67
43	The central amygdala modulates hypothalamic–pituitary–adrenal axis responses to systemic interleukin-1β administration. Neuroscience, 1999, 94, 175-183.	2.3	110
44	NTS catecholamine cell recruitment by hemorrhage and hypoxia. NeuroReport, 1999, 10, 3853-3856.	1.2	34
45	Central noradrenergic neurons signal via atp to elicit vasopressin responses to haemorrhage. Neuroscience, 1996, 73, 637-642.	2.3	66
46	Involvement of Medullary Catecholamine Cells in Neuroendocrine Responses to Systemic Cholecystokinin. Journal of Neuroendocrinology, 1996, 8, 819-824.	2.6	26
47	Hypovolaemic and osmotic stimuli induce distinct patterns of c-Fos expression in the rat subfornical organ. Brain Research, 1995, 698, 232-236.	2.2	27
48	Role of ventrolateral medulla catecholamine cells in hypothalamic neuroendocrine cell responses to systemic hypoxia. Journal of Neuroscience, 1995, 15, 7979-7988.	3.6	91
49	c-Fos expression in hypothalamic neurosecretory and brainstem catecholamine cells following noxious somatic stimuli. Neuroscience, 1994, 58, 765-775.	2.3	57
50	Neurochemical identification of fos-positive neurons using two-colour immunoperoxidase staining. Journal of Neuroscience Methods, 1993, 47, 73-83.	2.5	40
51	$\hat{l}\pm 2$ -Adrenoceptor modulation of A1 noradrenergic neuron input to supraoptic vasopressin cells. Brain Research, 1993, 613, 164-167.	2.2	17
52	ATP mediates an excitatory noradrenergic neuron input to supraoptic vasopressin cells. Brain Research, 1993, 607, 341-344.	2.2	88
53	Neuropeptide Y modulation of A1 noradrenergic neuron input to supraoptic vasopressin cells. Neuroscience Letters, 1993, 161, 60-64.	2.1	23
54	Differing effects of electrical and chemical parabrachial nucleus stimulation on supraoptic vasopressin cells. Journal of the Autonomic Nervous System, 1993, 45, 175-179.	1.9	9

#	Article	IF	CITATIONS
55	Locus coeruleus effects on baroreceptor responsiveness and activity of neurosecretory vasopressin cells. Journal of the Autonomic Nervous System, 1993, 42, 259-263.	1.9	6
56	A1 neurons and excitatory amino acid receptors in rat caudal medulla mediate vagal excitation of supraoptic vasopressin cells. Brain Research, 1992, 594, 244-252.	2.2	43
57	Oxytocin localization and function in the A1 noradrenergic cell group: Ultrastructural and electrophysiological studies. Neuroscience, 1990, 39, 717-725.	2.3	27
58	Involvement of the A1 cell group in baroreceptor inhibition of neurosecretory vasopressin cells. Neuroscience Letters, 1990, 113, 156-162.	2.1	29
59	Excitation of supraoptic vasopressin cells by stimulation of the A1 noradrenaline cell group: failure to demonstrate role for established adrenergic or amino acid receptors. Brain Research, 1990, 516, 91-98.	2.2	52
60	Neuropeptide Y potentiates excitation of supraoptic neurosecretory cells by noradrenaline. Brain Research, 1989, 499, 164-168.	2.2	23
61	Chapter 24 Control of neurosecretory vasopressin cells by noradrenergic projections of the caudal ventrolateral medulla. Progress in Brain Research, 1989, 81, 303-317.	1.4	43
62	Direct catecholaminergic projection from nucleus tractus solitarii to supraoptic nucleus. Brain Research, 1988, 454, 387-392.	2.2	62
63	Adrenoceptors in the preoptic-anterior hypothalamic area stimulate secretion of prolactin but not growth hormone in the male rat. Brain Research Bulletin, 1986, 16, 697-704.	3.0	22
64	Noradrenergic Afferents Facilitate the Activity of Tuberoinfundibular Neurons of the Hypothalamic Paraventricular Nucleus. Neuroendocrinology, 1985, 41, 17-22.	2.5	85
65	Electrophysiology of the subfornical organ and its hypothalamic connections—an in-vivo study in the rat. Brain Research Bulletin, 1985, 15, 83-86.	3.0	31
66	Comparison between the actions of avian pancreatic polypeptide, neuropeptide Y and norepinephrine on the excitability of rat supraoptic vasopressin neurons. Neuroscience Letters, 1985, 62, 181-185.	2.1	32
67	Opposing \hat{I}_{\pm} - and \hat{I}^2 -adrenergic mechanisms mediate dose-dependent actions of noradrenaline on supraoptic vasopressin neurones in vivo. Brain Research, 1985, 358, 171-179.	2.2	156
68	Subfornical Organ Efferents Influence the Excitability of Neurohypophyseal and Tuberoinfundibular Paraventricular Nucleus Neurons in the Rat. Neuroendocrinology, 1984, 39, 423-428.	2.5	82
69	Connections of hypothalamic paraventricular neurons with the dorsal medial thalamus and neurohypophysis: an electrophysiological study in the rat. Brain Research, 1984, 299, 376-379.	2.2	10
70	Electrophysiological evidence that noradrenergic afferents selectively facilitate the activity of supraoptic vasopressin neurons. Brain Research, 1984, 303, 233-240.	2.2	195
71	CNS regulation of reproduction: Peptidergic mechanisms. Brain Research Bulletin, 1984, 12, 181-186.	3.0	12
72	Facilitatory influence of noradrenergic afferents on the excitability of rat paraventricular nucleus neurosecretory cells Journal of Physiology, 1984, 355, 237-249.	2.9	170

#	Article	lF	CITATION
73	Depressor area within caudal ventrolateral medulla of the rat does not correspond to the A1 catecholamine cell group. Brain Research, 1983, 279, 299-302.	2.2	57
74	Catecholamine mechanisms in medio-basal hypothalamus influence prolactin but not growth hormone secretion. Brain Research, 1982, 253, 213-219.	2.2	23
75	Stimulatory role for medical preoptic/anterior hypothalamic area neurones in growth hormone and prolactin secretion. A kainic acid study. Brain Research, 1982, 238, 55-63.	2.2	16
76	Central Catecholamine Depletion: Effects on Physiological Growth Hormone and Prolactin Secretion. Neuroendocrinology, 1981, 32, 65-69.	2.5	27
77	Noradrenergic afferents to median eminence: Inhibitory role in rhythmic growth hormone secretion. Brain Research, 1980, 202, 335-345.	2.2	30
78	Noradrenergic and dopaminergic projections to the medial preoptic area of the rat. A combined horseradish peroxidase/catecholamine fluorescence study. Brain Research, 1980, 193, 543-548.	2.2	158
79	Thermoregulatory effects of preoptic area injections of noradrenaline in restrained and unrestrained rats. Brain Research, 1979, 174, 175-179.	2.2	33
80	Failure of cycloheximide to alter rate of recovery of temperature following acute DFP treatment. European Journal of Pharmacology, 1977, 44, 187-190.	3.5	12