
Simon Krause

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2157426/publications.pdf Version: 2024-02-01

SIMON KDALLSE

#	Article	IF	CITATIONS
1	A pressure-amplifying framework material with negative gas adsorption transitions. Nature, 2016, 532, 348-352.	13.7	490
2	Chemistry of Soft Porous Crystals: Structural Dynamics and Gas Adsorption Properties. Angewandte Chemie - International Edition, 2020, 59, 15325-15341.	7.2	236
3	A highly porous metal–organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake. Chemical Communications, 2012, 48, 10841.	2.2	197
4	A new metal–organic framework with ultra-high surface area. Chemical Communications, 2014, 50, 3450.	2.2	178
5	Towards artificial molecular factories from framework-embedded molecular machines. Nature Reviews Chemistry, 2020, 4, 550-562.	13.8	97
6	The effect of crystallite size on pressure amplification in switchable porous solids. Nature Communications, 2018, 9, 1573.	5.8	92
7	Visible-Light-Driven Rotation of Molecular Motors in a Dual-Function Metal–Organic Framework Enabled by Energy Transfer. Journal of the American Chemical Society, 2020, 142, 9048-9056.	6.6	86
8	Proline Functionalization of the Mesoporous Metalâ^'Organic Framework DUT-32. Inorganic Chemistry, 2015, 54, 1003-1009.	1.9	73
9	Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons. Physical Chemistry Chemical Physics, 2016, 18, 20607-20614.	1.3	73
10	Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks. Nature Communications, 2019, 10, 3632.	5.8	73
11	A Stimuliâ€Responsive Zirconium Metal–Organic Framework Based on Supermolecular Design. Angewandte Chemie - International Edition, 2017, 56, 10676-10680.	7.2	72
12	Tailoring adsorption induced phase transitions in the pillared-layer type metal–organic framework DUT-8(Ni). Dalton Transactions, 2017, 46, 4685-4695.	1.6	68
13	Assembly of metal–organic polyhedra into highly porous frameworks for ethene delivery. Chemical Communications, 2015, 51, 1046-1049.	2.2	65
14	Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction. Chemical Communications, 2015, 51, 17285-17288.	2.2	56
15	Tunable Flexibility and Porosity of the Metal–Organic Framework DUT-49 through Postsynthetic Metal Exchange. Chemistry of Materials, 2020, 32, 889-896.	3.2	54
16	Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworks. Journal of Physical Chemistry C, 2018, 122, 19171-19179.	1.5	52
17	Experimental Evidence of Confined Methane Hydrate in Hydrophilic and Hydrophobic Model Carbons. Journal of Physical Chemistry C, 2019, 123, 24071-24079.	1.5	52
18	In Situ Monitoring of Unique Switching Transitions in the Pressure-Amplifying Flexible Framework Material DUT-49 by High-Pressure ¹²⁹ Xe NMR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 5195-5200.	1.5	41

SIMON KRAUSE

#	Article	IF	CITATIONS
19	High-Pressure in Situ ¹²⁹ Xe NMR Spectroscopy: Insights into Switching Mechanisms of Flexible Metal–Organic Frameworks Isoreticular to DUT-49. Chemistry of Materials, 2019, 31, 6193-6201.	3.2	41
20	Influence of precursor porosity on sodium and sulfur promoted iron/carbon Fischer–Tropsch catalysts derived from metal–organic frameworks. Chemical Communications, 2017, 53, 10204-10207.	2.2	36
21	Cooperative light-induced breathing of soft porous crystals via azobenzene buckling. Nature Communications, 2022, 13, 1951.	5.8	33
22	lmpact of Defects and Crystal Size on Negative Gas Adsorption in DUT-49 Analyzed by <i>In Situ</i> ¹²⁹ Xe NMR Spectroscopy. Chemistry of Materials, 2020, 32, 4641-4650.	3.2	31
23	Engineering micromechanics of soft porous crystals for negative gas adsorption. Chemical Science, 2020, 11, 9468-9479.	3.7	30
24	Exploring the thermodynamic criteria for responsive adsorption processes. Chemical Science, 2019, 10, 5011-5017.	3.7	29
25	The impact of crystal size and temperature on the adsorption-induced flexibility of the Zr-based metal–organic framework DUT-98. Beilstein Journal of Nanotechnology, 2019, 10, 1737-1744.	1.5	28
26	Die Chemie verformbarer poröser Kristalle – Strukturdynamik und Gasadsorptionseigenschaften. Angewandte Chemie, 2020, 132, 15438-15456.	1.6	28
27	Solvent-free synthesis of a porous thiophene polymer by mechanochemical oxidative polymerization. Journal of Materials Chemistry A, 2018, 6, 21901-21905.	5.2	24
28	Charting the Complete Thermodynamic Landscape of Gas Adsorption for a Responsive Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 4143-4147.	6.6	21
29	New insights into solvent-induced structural changes of ¹³ C labelled metal–organic frameworks by solid state NMR. Chemical Communications, 2019, 55, 9140-9143.	2.2	20
30	The role of temperature and adsorbate on negative gas adsorption transitions of the mesoporous metal–organic framework DUT-49. Faraday Discussions, 2021, 225, 168-183.	1.6	19
31	Light-driven molecular motors embedded in covalent organic frameworks. Chemical Science, 2022, 13, 8253-8264.	3.7	19
32	In Situ Imine-Based Linker Formation for the Synthesis of Zirconium MOFs: A Route to CO ₂ Capture Materials and Ethylene Oligomerization Catalysts. Inorganic Chemistry, 2020, 59, 350-359.	1.9	18
33	Cooperative and synchronized rotation in motorized porous frameworks: impact on local and global transport properties of confined fluids. Faraday Discussions, 2021, 225, 286-300.	1.6	16
34	Structural Transitions of the Metal–Organic Framework DUT-49(Cu) upon Physi- and Chemisorption Studied by <i>in Situ</i> Electron Paramagnetic Resonance Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 5856-5862.	2.1	14
35	Massive Pressure Amplification by Stimulated Contraction of Mesoporous Frameworks**. Angewandte Chemie - International Edition, 2021, 60, 11735-11739.	7.2	14
36	Perspectives on the Influence of Crystal Size and Morphology on the Properties of Porous Framework Materials. Frontiers in Chemistry, 2021, 9, 772059.	1.8	11

SIMON KRAUSE

#	Article	IF	CITATIONS
37	A Stimuliâ€Responsive Zirconium Metal–Organic Framework Based on Supermolecular Design. Angewandte Chemie, 2017, 129, 10816-10820.	1.6	9
38	Theoretical and experimental investigations of ¹²⁹ Xe NMR chemical shift isotherms in metal–organic frameworks. Physical Chemistry Chemical Physics, 2018, 20, 25039-25043.	1.3	8
39	Low Temperature Calorimetry Coupled with Molecular Simulations for an In-Depth Characterization of the Guest-Dependent Compliant Behavior of MOFs. Chemistry of Materials, 2020, 32, 3489-3498.	3.2	8
40	Massive Pressure Amplification by Stimulated Contraction of Mesoporous Frameworks**. Angewandte Chemie, 2021, 133, 11841-11845.	1.6	2
41	Novel computational tools: general discussion. Faraday Discussions, 2021, 225, 341-357.	1.6	1
42	Towards complex systems and devices: general discussion. Faraday Discussions, 2021, 225, 431-441.	1.6	0
43	Materials breaking the rules: general discussion. Faraday Discussions, 2021, 225, 255-270.	1.6	Ο