Sam Moore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2157311/publications.pdf Version: 2024-02-01

SAM MOORE

#	Article	IF	CITATIONS
1	Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 2020, 579, 80-87.	13.7	439
2	Denial of longâ€ŧerm issues with agriculture on tropical peatlands will have devastating consequences. Global Change Biology, 2017, 23, 977-982.	4.2	114
3	Drier tropical forests are susceptible to functional changes in response to a longâ€ŧerm drought. Ecology Letters, 2019, 22, 855-865.	3.0	75
4	Contrasting vulnerability of drained tropical and highâ€latitude peatlands to fluvial loss of stored carbon. Global Biogeochemical Cycles, 2014, 28, 1215-1234.	1.9	69
5	Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nature Communications, 2020, 11, 3346.	5.8	61
6	Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa. Global Change Biology, 2018, 24, e496-e510.	4.2	50
7	The Global Ecosystems Monitoring network: Monitoring ecosystem productivity and carbon cycling across the tropics. Biological Conservation, 2021, 253, 108889.	1.9	42
8	ENSO Drives interannual variation of forest woody growth across the tropics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170410.	1.8	41
9	The persistence of carbon in the African forest understory. Nature Plants, 2019, 5, 133-140.	4.7	41
10	Resistance of African tropical forests to an extreme climate anomaly. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	37
11	Pollen-vegetation richness and diversity relationships in the tropics. Vegetation History and Archaeobotany, 2018, 27, 411-418.	1.0	31
12	Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiology, 2018, 38, 1912-1925.	1.4	23
13	The modern pollen–vegetation relationships of a tropical forest–savannah mosaic landscape, Ghana, West Africa. Palynology, 2018, 42, 324-338.	0.7	20
14	Fineâ€root exploitation strategies differ in tropical old growth and loggedâ€over forests in Chana. Biotropica, 2018, 50, 606-615.	0.8	14
15	Fine root dynamics across pantropical rainforest ecosystems. Global Change Biology, 2021, 27, 3657-3680.	4.2	13
16	Functional susceptibility of tropical forests to climate change. Nature Ecology and Evolution, 2022, 6, 878-889.	3.4	8
17	Variability in modern pollen rain from moist and wet tropical forest plots in Ghana, West Africa. Grana, 2019, 58, 45-62.	0.4	1