
Laura E Mccoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2156920/publications.pdf Version: 2024-02-01

LAURA F MCCOV

#	Article	IF	CITATIONS
1	SARS-CoV-2 evolution during treatment of chronic infection. Nature, 2021, 592, 277-282.	27.8	802
2	Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science, 2020, 370, 1339-1343.	12.6	735
3	Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature, 2021, 593, 136-141.	27.8	648
4	Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature, 2021, 596, 417-422.	27.8	549
5	HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature, 2019, 568, 244-248.	27.8	447
6	HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies. Immunity, 2016, 45, 483-496.	14.3	335
7	Elicitation of Robust Tier 2 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope Trimer Immunization Using Optimized Approaches. Immunity, 2017, 46, 1073-1088.e6.	14.3	286
8	Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature, 2022, 601, 110-117.	27.8	280
9	Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell Reports, 2016, 16, 2327-2338.	6.4	216
10	Circulating and intrahepatic antiviral B cells are defective in hepatitis B. Journal of Clinical Investigation, 2018, 128, 4588-4603.	8.2	208
11	The effect of spike mutations on SARS-CoV-2 neutralization. Cell Reports, 2021, 34, 108890.	6.4	200
12	Identification and specificity of broadly neutralizing antibodies against <scp>HIV</scp> . Immunological Reviews, 2017, 275, 11-20.	6.0	198
13	Pandemic peak SARS-CoV-2 infection and seroconversion rates in London frontline health-care workers. Lancet, The, 2020, 396, e6-e7.	13.7	196
14	Identification of Common Features in Prototype Broadly Neutralizing Antibodies to HIV Envelope V2 Apex to Facilitate Vaccine Design. Immunity, 2015, 43, 959-973.	14.3	177
15	Electron-Microscopy-Based Epitope Mapping Defines Specificities of Polyclonal Antibodies Elicited during HIV-1 BG505 Envelope Trimer Immunization. Immunity, 2018, 49, 288-300.e8.	14.3	175
16	Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant. Immunity, 2021, 54, 1276-1289.e6.	14.3	112
17	SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity. Science Advances, 2021, 7, .	10.3	107
18	Comparative assessment of multiple COVID-19 serological technologies supports continued evaluation of point-of-care lateral flow assays in hospital and community healthcare settings. PLoS Pathogens, 2020, 16, e1008817.	4.7	105

LAURA E MCCOY

#	Article	IF	CITATIONS
19	Potent and broad neutralization of HIV-1 by a llama antibody elicited by immunization. Journal of Experimental Medicine, 2012, 209, 1091-1103.	8.5	91
20	Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies. PLoS Pathogens, 2015, 11, e1005110.	4.7	78
21	Characterization of humoral and SARS-CoV-2 specific T cell responses in people living with HIV. Nature Communications, 2021, 12, 5839.	12.8	67
22	A gp41 MPER-specific Llama VHH Requires a Hydrophobic CDR3 for Neutralization but not for Antigen Recognition. PLoS Pathogens, 2013, 9, e1003202.	4.7	64
23	Elicitation of Neutralizing Antibodies Targeting the V2 Apex of the HIV Envelope Trimer in a Wild-Type Animal Model. Cell Reports, 2017, 21, 222-235.	6.4	58
24	The expanding array of HIV broadly neutralizing antibodies. Retrovirology, 2018, 15, 70.	2.0	38
25	Failure to seroconvert after two doses of BNT162b2 SARS-CoV-2 vaccine in a patient with uncontrolled HIV. Lancet HIV,the, 2021, 8, e317-e318.	4.7	36
26	Molecular Evolution of Broadly Neutralizing Llama Antibodies to the CD4-Binding Site of HIV-1. PLoS Pathogens, 2014, 10, e1004552.	4.7	34
27	SARS-CoV-2 antibody responses in patients with acute leukaemia. Leukemia, 2021, 35, 289-292.	7.2	26
28	To bnAb or Not to bnAb: Defining Broadly Neutralising Antibodies Against HIV-1. Frontiers in Immunology, 2021, 12, 708227.	4.8	26
29	Super Potent Bispecific Llama VHH Antibodies Neutralize HIV via a Combination of gp41 and gp120 Epitopes. Antibodies, 2019, 8, 38.	2.5	25
30	SARS-CoV-2–specific memory B cells can persist in the elderly who have lost detectable neutralizing antibodies. Journal of Clinical Investigation, 2022, 132, .	8.2	24
31	HIV envelope trimer-elicited autologous neutralizing antibodies bind a region overlapping the N332 glycan supersite. Science Advances, 2020, 6, eaba0512.	10.3	18
32	Antibody responses induced by SHIV infection are more focused than those induced by soluble native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2021, 17, e1009736.	4.7	18
33	Low seropositivity and suboptimal neutralisation rates in patients fully vaccinated against COVIDâ€19 with Bâ€cell malignancies. British Journal of Haematology, 2021, 195, 706-709.	2.5	16
34	Neutralizing Antibody Responses After SARS-CoV-2 Infection in End-Stage Kidney Disease and Protection Against Reinfection. Kidney International Reports, 2021, 6, 1799-1809.	0.8	13
35	Influence of IL-6 levels on patient survival in COVID-19. Journal of Critical Care, 2021, 66, 123-125.	2.2	7
36	Antibodies from Rabbits Immunized with HIV-1 Clade B SOSIP Trimers Can Neutralize Multiple Clade B Viruses by Destabilizing the Envelope Glycoprotein. Journal of Virology, 2021, 95, e0009421.	3.4	5

LAURA E MCCOY

#	Article	IF	CITATIONS
37	Sex differences in immunological responses to COVID-19: a cross-sectional analysis of a single-centre cohort. British Journal of Anaesthesia, 2021, 127, e75-e78.	3.4	4
38	Vaccine responses in ageing and chronic viral infection. Oxford Open Immunology, 2021, 2, .	2.8	3
39	Defining Potential Therapeutic Targets in Coronavirus Disease 2019: A Cross-Sectional Analysis of a Single-Center Cohort. , 2021, 3, e0488.		2