Akitoshi Hayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2156798/publications.pdf

Version: 2024-02-01

376 papers 21,660 citations

75 h-index 131 g-index

386 all docs

386 docs citations

times ranked

386

10017 citing authors

#	Article	IF	CITATIONS
1	Liquid-phase synthesis of Li3PS4 solid electrolyte using ethylenediamine. Journal of Sol-Gel Science and Technology, 2022, 101, 2-7.	1.1	9
2	Solid Electrolyte with Oxidation Tolerance Provides a Highâ€Capacity Li ₂ Sâ€Based Positive Electrode for Allâ€Solidâ€State Li/S Batteries. Advanced Functional Materials, 2022, 32, 2106174.	7.8	25
3	Characteristics of a Li ₃ BS ₃ Thioborate Glass Electrolyte Obtained via a Mechanochemical Process. ACS Applied Energy Materials, 2022, 5, 1421-1426.	2.5	12
4	Kinetics of Interfacial Lithium-ion Transfer between a Graphite Negative Electrode and a Li ₂ 5-P ₂ 5 Glassy Solid Electrolyte. Electrochemistry, 2022, 90, 037003-037003.	0.6	3
5	Mechanochemical Synthesis of Pyrite Ni _{1â^'} <i>_x</i> Fe <i>_xElectrode for All-solid-state Sodium Battery. Electrochemistry, 2022, 90, 037011-037011.</i>	g t;S& lt;sul	b>2< <mark>/s</mark> i
6	Molybdenum polysulfide electrode with high capacity for all-solid-state sodium battery. Solid State lonics, 2022, 376, 115848.	1.3	7
7	Studies on the inhibition of lithium dendrite formation in sulfide solid electrolytes doped with LiX (XÂ=ÂBr, I). Solid State Ionics, 2022, 377, 115869.	1.3	15
8	Synthesis of an All ₃ -doped Li ₂ S positive electrode with superior performance in all-solid-state batteries. Materials Advances, 2022, 3, 2488-2494.	2.6	11
9	Mechanochemically Prepared Highly Conductive Na _{2.88} Sb _{0.88} W _{0.12} S _{4Composite Electrolytes for All-Solid-State Sodium Battery. Electrochemistry, 2022, 90, 047005-047005.})⧁-Nal	4
10	AC Impedance Analysis of the Degeneration and Recovery of Argyrodite Sulfide-Based Solid Electrolytes under Dry-Room-Simulated Condition. Electrochemistry, 2022, 90, 037012-037012.	0.6	14
11	Mechanochemical synthesis of amorphous MoS <i>_x</i> (<i>x</i> = 3, 4, 5, 6, and 7) electrode for all-solid-state sodium battery. Journal of the Ceramic Society of Japan, 2022, 130, 308-312.	0.5	2
12	Lithium-ion conductivity and crystallization temperature of multicomponent oxide glass electrolytes. Journal of Non-Crystalline Solids: X, 2022, 14, 100089.	0.5	2
13	Na2S–Nal solid solution as positive electrode in all-solid-state Na/S batteries. Journal of Power Sources, 2022, 532, 231313.	4.0	8
14	High Rate Capability from a Graphite Anode through Surface Modification with Lithium Iodide for All-Solid-State Batteries. ACS Applied Energy Materials, 2022, 5, 667-673.	2.5	15
15	Sodium-Ion Conducting Solid Electrolytes in the Na ₂ 3 System. Electrochemistry, 2022, 90, 067009-067009.	0.6	5
16	Characterizing the Structural Change of Na ₃ PS ₄ Solid Electrolytes in a Humid N ₂ Atmosphere. Journal of Physical Chemistry C, 2022, 126, 7383-7389.	1.5	6
17	Crystalline precursor derived from Li3PS4 and ethylenediamine for ionic conductors. Journal of Sol-Gel Science and Technology, 2022, 104, 627-634.	1.1	2
18	Formation of Passivate Interphases by Na ₃ BS ₃ -Glass Solid Electrolytes in All-Solid-State Sodium-Metal Batteries. ACS Applied Materials & Solid Electrolytes in All-Solid-State Sodium-Metal Batteries.	4.0	14

#	Article	IF	CITATIONS
19	Amorphous Positive Electrode Materials Prepared Using LiMn _{1.5} Ni _{0.5} O ₄ and Lithium Oxyacid Salts. Chemistry Letters, 2022, 51, 815-818.	0.7	2
20	Room-Temperature Preparation of All-Solid-State Lithium Batteries Using TiO ₂ Anodes and Oxide Electrolytes. Journal of Physical Chemistry C, 2022, 126, 10320-10326.	1.5	6
21	Preparation and characterization of Na _{0.88} W _{0.12} S _{4â^'< solid electrolyte. Journal of the Ceramic Society of Japan, 2022, 130, 498-503.}	/su b& gt;&	lt;i> <su< td=""></su<>
22	Comparison of Sulfur Cathode Reactions between a Concentrated Liquid Electrolyte System and a Solid-State Electrolyte System by Soft X-Ray Absorption Spectroscopy. ACS Applied Energy Materials, 2021, 4, 186-193.	2.5	10
23	Synthesis and Electrochemical Properties of Li ₃ CuS ₂ as a Positive Electrode Material for All-Solid-State Batteries. ACS Applied Energy Materials, 2021, 4, 20-24.	2.5	13
24	Preparation and characterization of sodium-ion conductive Na ₃ BS ₃ glass and glass–ceramic electrolytes. Materials Advances, 2021, 2, 1676-1682.	2.6	19
25	Li Negative Electrode. , 2021, , 137-142.		0
26	Visualizing Local Electrical Properties of Composite Electrodes in Sulfide All-Solid-State Batteries by Scanning Probe Microscopy. Journal of Physical Chemistry C, 2021, 125, 2841-2849.	1.5	11
27	Sulfur and Sulfide Positive Electrode. , 2021, , 125-135.		0
28	Structures and conductivities of stable and metastable Li ₅ GaS ₄ solid electrolytes. RSC Advances, 2021, 11, 25211-25216.	1.7	7
29	Glass Electrolyte., 2021,, 61-66.		0
30	High Ionic Conductivity of Liquid-Phase-Synthesized Li ₃ PS ₄ Solid Electrolyte, Comparable to That Obtained via Ball Milling. ACS Applied Energy Materials, 2021, 4, 2275-2281.	2.5	33
31	Improvement of lithium ionic conductivity of Li3PS4 through suppression of crystallization using low-boiling-point solvent in liquid-phase synthesis. Solid State Ionics, 2021, 361, 115568.	1.3	21
32	Hydroxide ion Conduction Mechanism in Mg-Al CO32â^' Layered Double Hydroxide. Journal of Electrochemical Science and Technology, 2021, 12, 230-236.	0.9	1
33	Preparation and characterization of hexagonal Li4GeO4-based glass-ceramic electrolytes. Solid State lonics, 2021, 363, 115605.	1.3	9
34	Microstructure and Charge–Discharge Mechanism of a Li ₃ CuS ₂ Positive Electrode Material for All-Solid-State Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 6290-6295.	2.5	10
35	Importance of Li-Metal/Sulfide Electrolyte Interphase Ionic Conductivity in Suppressing Short-Circuiting of All-Solid-State Li-Metal Batteries. Journal of the Electrochemical Society, 2021, 168, 060542.	1.3	10
36	<i>In situ</i> observation of the deterioration process of sulfide-based solid electrolytes using airtight and air-flow TEM systems. Microscopy (Oxford, England), 2021, 70, 519-525.	0.7	11

#	Article	IF	CITATIONS
37	Solid electrolytes Na $<$ sub $>$ 10+ $<$ sub $>$ 6: Sn $<$ sub $>$ 1+ $<$ sub $>$ 6: Sn $<$ sub $>$ 8: Sn $<$ sub $>$ 8: Sn $<$ sub $>8:$ 10+ $<$ 1: Sn $<$ sub $>8:$ 20: Sn $<$ 5: Sn $<$ 8: Sn	b o.5 /i>S <s< td=""><td>ഥ⁄⊳12</td></s<>	ഥ⁄⊳12
38	Investigation of the Suppression of Dendritic Lithium Growth with a Lithium-lodide-Containing Solid Electrolyte. Chemistry of Materials, 2021, 33, 4907-4914.	3.2	30
39	Microstructure and Charge-discharge Properties of a Li3CuS2 active material for All-Solid-State Batteries. Microscopy and Microanalysis, 2021, 27, 3424-3425.	0.2	O
40	Glassy oxide electrolytes in the system Li ₄ 2SO ₄ with excellent formability. Journal of the Ceramic Society of Japan, 2021, 129, 458-463.	0.5	2
41	Amorphous Li ₂ O–Lil Solid Electrolytes Compatible to Li Metal. Electrochemistry, 2021, 89, 334-336.	0.6	13
42	Electrode performance of amorphous MoS3 in all-solid-state sodium secondary batteries. Journal of Power Sources Advances, 2021, 10, 100061.	2.6	19
43	Development of All-solid-state Batteries. Journal of the Institute of Electrical Engineers of Japan, 2021, 141, 579-582.	0.0	1
44	Mechanochemical synthesis and characterization of Na3–P1–W S4 solid electrolytes. Journal of Power Sources, 2021, 506, 230100.	4.0	17
45	Crystallization behaviors in superionic conductor Na3PS4. Journal of Power Sources, 2021, 511, 230444.	4.0	9
46	Development, Structure, and Mechanical Properties of Sulfide Solid Electrolytes., 2021,, 38-48.		0
47	Visualization and Control of Chemically Induced Crack Formation in All-Solid-State Lithium-Metal Batteries with Sulfide Electrolyte. ACS Applied Materials & Samp; Interfaces, 2021, 13, 5000-5007.	4.0	50
48	High-Rate Lithium Metal Plating and Stripping on Solid Electrolytes Using a Porous Current Collector with a High Aperture Ratio. ACS Applied Energy Materials, 2021, 4, 12613-12622.	2.5	4
49	Aqueous solution synthesis of Na ₃ SbS ₄ –Na ₂ WS ₄ superionic conductors. Journal of Materials Chemistry A, 2020, 8, 1947-1954.	5.2	47
50	Synthesis of Sulfide Solid Electrolytes through the Liquid Phase: Optimization of the Preparation Conditions. ACS Omega, 2020, 5, 26287-26294.	1.6	22
51	Exothermal behavior and microstructure of a LiNi1/3Mn1/3Co1/3O2 electrode layer using a Li4SnS4 solid electrolyte. Journal of Power Sources, 2020, 479, 228827.	4.0	22
52	First-Principles Calculation Study of Na ⁺ Superionic Conduction Mechanism in W- and Mo-Doped Na ₃ SbS ₄ Solid Electrolytes. Chemistry of Materials, 2020, 32, 8373-8381.	3.2	33
53	Preparation and characterization of composite quasi-solid electrolytes composed of 75Li2SÂ-25P2S5 glass and phosphate esters. Journal of Power Sources, 2020, 479, 228826.	4.0	2
54	Multimodal Plant Healthcare Flexible Sensor System. ACS Nano, 2020, 14, 10966-10975.	7.3	129

#	Article	IF	CITATIONS
55	Capacity Improvement by Nitrogen Doping to Lithium-Rich Cathode Materials with Stabilization Effect of Oxide Ions Redox. ACS Applied Energy Materials, 2020, 3, 4162-4167.	2.5	18
56	Fabrication of Mg-Al Layered Double Hydroxide Thin Membrane for All-Solid-State Alkaline Fuel Cell Using Glass Paper as a Support. Frontiers in Materials, 2020, 7, .	1.2	5
57	Reaction uniformity visualized by Raman imaging in the composite electrode layers of all-solid-state lithium batteries. Physical Chemistry Chemical Physics, 2020, 22, 13271-13276.	1.3	9
58	High-rate operation of sulfur/mesoporous activated carbon composite electrode for all-solid-state lithium-sulfur batteries. Journal of the Ceramic Society of Japan, 2020, 128, 233-237.	0.5	19
59	Electronic state of sulfide-based alkali-ion conducting solid-state electrolytes applied to all-solid-state secondary batteries. IOP Conference Series: Materials Science and Engineering, 2020, 835, 012041.	0.3	1
60	A reversible oxygen redox reaction in bulk-type all-solid-state batteries. Science Advances, 2020, 6, eaax7236.	4.7	34
61	Sulfide Electrolyte Suppressing Side Reactions in Composite Positive Electrodes for All-Solid-State Lithium Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 29228-29234.	4.0	7
62	How Certain Are the Reported Ionic Conductivities of Thiophosphate-Based Solid Electrolytes? An Interlaboratory Study. ACS Energy Letters, 2020, 5, 910-915.	8.8	98
63	<i>Operando</i> Confocal Microscopy for Dynamic Changes of Li ⁺ Ion Conduction Path in Graphite Electrode Layers of All-Solid-State Batteries. Journal of Physical Chemistry Letters, 2020, 11, 900-904.	2.1	44
64	Control of Dendritic Growth of the Lithium Metal in All-Solid-State Lithium Metal Batteries: Effect of the Current Collector with Microsized Pores. ACS Applied Materials & Interfaces, 2020, 12, 22798-22803.	4.0	18
65	All-solid-state sodium-sulfur battery showing full capacity with activated carbon MSP20-sulfur-Na3SbS4 composite. Electrochemistry Communications, 2020, 116, 106741.	2.3	18
66	Preparation and Characterization of Cation-Substituted Na ₃ SbS ₄ Solid Electrolytes. ACS Applied Energy Materials, 2020, 3, 11706-11712.	2.5	22
67	Preparation of sodium-ion-conductive Na _{3â^'} <l>_xSbS_{4â^'}<i> solid electrolytes. Journal of the Ceramic Society of Japan, 2020, 128, 641-647.</i></l>	< ,sus b>	t;x &l t;/sub&g
68	Quasi-Solid Electrolytes Comprising Sulfide Electrolyte and Carboxylate Esters: Investigation of the Influence of the Carboxylate Ester Structure. Journal of the Electrochemical Society, 2020, 167, 120521.	1.3	1
69	Characterization of quasi-solid electrolytes based on Li ₃ 9S ₄ glass with organic carbonate additives. Journal of the Ceramic Society of Japan, 2020, 128, 653-655.	0.5	0
70	Mechanochemical synthesis and characterization of amorphous Li ₂ CN ₂ as a lithium ion conductor. Journal of the Ceramic Society of Japan, 2019, 127, 518-520.	0.5	10
71	Ion-exchange Synthesis of Li ₂ NaPS ₄ from Na ₃ PS ₄ . Chemistry Letters, 2019, 48, 863-865.	0.7	0
72	New lithium-conducting nitride glass Li3BN2. Solid State Ionics, 2019, 339, 114985.	1.3	13

#	Article	IF	CITATIONS
73	Mechanochemical synthesis of cubic rocksalt Na ₂ TiS ₃ as novel active materials for all-solid-state sodium secondary batteries. Journal of the Ceramic Society of Japan, 2019, 127, 514-517.	0.5	5
74	Microstructure and conductivity of Al-substituted Li7La3Zr2O12 ceramics with different grain sizes. Solid State Ionics, 2019, 342, 115047.	1.3	7
75	Metastable Materials for All-Solid-State Batteries. Electrochemistry, 2019, 87, 247-250.	0.6	12
76	Ex situ investigation of exothermal behavior and structural changes of the Li3PS4- LiNi1/3Mn1/3Co1/3O2 electrode composites. Solid State Ionics, 2019, 342, 115046.	1.3	13
77	Mechanochemical Synthesis of Na-Sb Alloy Negative Electrodes and Their Application to All-solid-state Sodium Batteries. Electrochemistry, 2019, 87, 289-293.	0.6	10
78	An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol. Journal of Materials Chemistry A, 2019, 7, 558-566.	5.2	127
79	Morphological Effect on Reaction Distribution Influenced by Binder Materials in Composite Electrodes for Sheet-type All-Solid-State Lithium-Ion Batteries with the Sulfide-based Solid Electrolyte. Journal of Physical Chemistry C, 2019, 123, 3292-3298.	1.5	53
80	Preparation and characterization of lithium ion conductive Li3SbS4 glass and glass-ceramic electrolytes. Solid State Ionics, 2019, 333, 45-49.	1.3	67
81	Lithium Dissolution/Deposition Behavior of Al-Doped Li ₇ La ₃ Zr ₂ O ₁₂ Ceramics with Different Grain Sizes. Journal of the Electrochemical Society, 2019, 166, A5470-A5473.	1.3	15
82	Exothermal mechanisms in the charged LiNi1/3Mn1/3Co1/3O2 electrode layers for sulfide-based all-solid-state lithium batteries. Journal of Power Sources, 2019, 434, 226714.	4.0	29
83	Quantitative analysis of crystallinity in an argyrodite sulfide-based solid electrolyte synthesized via solution processing. RSC Advances, 2019, 9, 14465-14471.	1.7	22
84	Highly Stable Li/Li ₃ BO ₃ â€"Li ₂ SO ₄ Interface and Application to Bulk-Type All-Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2019, 2, 3042-3048.	2.5	19
85	Suspension synthesis of Na3-PS4-Cl solid electrolytes. Journal of Power Sources, 2019, 428, 131-135.	4.0	17
86	Sulfurâ€Based Composite Electrode with Interconnected Mesoporous Carbon for Allâ€Solidâ€State Lithium–Sulfur Batteries. Energy Technology, 2019, 7, 1900077.	1.8	38
87	Fast Cationic and Anionic Redox Reactions in Li ₂ 4 Positive Electrode Materials. ACS Applied Energy Materials, 2019, 2, 1594-1599.	2.5	6
88	Amorphous Niâ€Rich Li(Ni _{1â^'} <i>_x</i> Co <i>< Positive Electrode Materials for Bulkâ€Type Allâ€Oxide Solidâ€State Batteries. Advanced Materials Interfaces, 2019, 6, 1802016.</i>	sub>y <td>b>{/ij>)O<sub< td=""></sub<></td>	b>{/ij>)O <sub< td=""></sub<>
89	Formation of interfacial contact with ductile Li3BO3-based electrolytes for improving cyclability in all-solid-state batteries. Journal of Power Sources, 2019, 424, 215-219.	4.0	20
90	All-solid-state cells with Li4Ti5O12/carbon nanotube composite electrodes prepared by infiltration with argyrodite sulfide-based solid electrolytes via liquid-phase processing. Journal of Power Sources, 2019, 417, 125-131.	4.0	27

#	Article	IF	CITATIONS
91	Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nature Reviews Chemistry, 2019, 3, 189-198.	13.8	238
92	A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nature Communications, 2019, 10, 5266.	5.8	216
93	Sulfurâ∈Based Composite Electrode with Interconnected Mesoporous Carbon for Allâ€Solidâ€State Lithium–Sulfur Batteries. Energy Technology, 2019, 7, 1980393.	1.8	6
94	Amorphous Na ₂ TiS ₃ as an Active Material for All-solid-state Sodium Batteries. Chemistry Letters, 2019, 48, 288-290.	0.7	7
95	Glasses and Glass-Ceramics for Solid-State Battery Applications. Springer Handbooks, 2019, , 1697-1754.	0.3	9
96	Development of Solid Electrolytes for All-Solid-State Batteries. Nippon Gomu Kyokaishi, 2019, 92, 430-434.	0.0	0
97	Development of Next Generation Battery Materials by Mechanochemical Process. Journal of the Society of Powder Technology, Japan, 2019, 56, 452-458.	0.0	0
98	Mechanical Properties of Li ₂ S–P ₂ S ₅ Glasses with Lithium Halides and Application in All-Solid-State Batteries. ACS Applied Energy Materials, 2018, 1, 1002-1007.	2.5	126
99	Crystallization behavior of the Li2S–P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer. Scientific Reports, 2018, 8, 6214.	1.6	30
100	Amorphous LiCoO2-based Positive Electrode Active Materials with Good Formability for All-Solid-State Rechargeable Batteries. MRS Advances, 2018, 3, 1319-1327.	0.5	10
101	XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries. Solid State Ionics, 2018, 322, 1-4.	1.3	118
102	Preparation of Na3PS4 electrolyte by liquid-phase process using ether. Solid State Ionics, 2018, 320, 33-37.	1.3	17
103	Preparation and characterization of Na3PS4–Na4GeS4 glass and glass-ceramic electrolytes. Solid State Ionics, 2018, 320, 193-198.	1.3	16
104	Preparation of Sodium Ion Conductive Na ₁₀ GeP ₂ S ₁₂ Glass-ceramic Electrolytes. Chemistry Letters, 2018, 47, 13-15.	0.7	35
105	Low temperature sintering of Na1+Zr2Si P3â^'O12 by the addition of Na3BO3. Scripta Materialia, 2018, 145, 67-70.	2.6	44
106	Liquidâ€phase sintering of highly Na ⁺ ion conducting Na ₃ Zr ₂ Si ₂ PO ₁₂ ceramics using Na ₃ BO ₃ additive. Journal of the American Ceramic Society, 2018, 101, 1255-1265.	1.9	69
107	Effect of introducing interlayers into electrode/electrolyte interface in all-solid-state battery using sulfide electrolyte. Solid State Ionics, 2018, 327, 150-156.	1.3	38
108	Thermal behavior and microstructures of cathodes for liquid electrolyte-based lithium batteries. Scientific Reports, 2018, 8, 15613.	1.6	17

7

#	Article	lF	Citations
109	Amorphization of Sodium Cobalt Oxide Active Materials for High-Capacity All-Solid-State Sodium Batteries. Chemistry of Materials, 2018, 30, 6998-7004.	3.2	12
110	Mechanical properties of sulfide glasses in all-solid-state batteries. Journal of the Ceramic Society of Japan, 2018, 126, 719-727.	0.5	75
111	Oxide-Based Composite Electrolytes Using Na ₃ Zr ₂ Si ₂ PO ₁₂ /Na ₃ PS ₄ Interfacial Ion Transfer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19605-19614.	4.0	15
112	Mechanochemically Prepared Li ₂ Sâ€"P ₂ S ₅ â€"LiBH ₄ Solid Electrolytes with an Argyrodite Structure. ACS Omega, 2018, 3, 5453-5458.	1.6	41
113	Sodium thiophosphate electrolyte thin films prepared by pulsed laser deposition for bulk-type all-solid-state sodium rechargeable batteries. Journal of the Ceramic Society of Japan, 2018, 126, 475-481.	0.5	8
114	High-Temperature Performance of All-Solid-State Lithium-Metal Batteries Having Li/Li ₃ PS ₄ Interfaces Modified with Au Thin Films. Journal of the Electrochemical Society, 2018, 165, A1950-A1954.	1.3	44
115	Lithium dissolution/deposition behavior with Li3PS4-Lil electrolyte for all-solid-state batteries operating at high temperatures. Electrochimica Acta, 2018, 286, 158-162.	2.6	83
116	Preparation of Solid Electrolyte Particles and Solid-Solid Interfaces for All-Solid-State Batteries. , 2018, , 579-584.		0
117	Lithium-lon-Conducting Argyrodite-Type Li $<$ sub $>$ 6 $<$ /sub $>$ PS $<$ sub $>$ 5 $<$ /sub $>$ X (X = Cl, Br, I) Solid Electrolytes Prepared by a Liquid-Phase Technique Using Ethanol as a Solvent. ACS Applied Energy Materials, 2018, 1, 3622-3629.	2.5	103
118	Preparation of an Amorphous 80LiCoO $<$ sub $>$ 2 $<$ /sub $>$ Â \cdot 20Li $<$ sub $>$ 2 $<$ /sub $>$ SO $<$ sub $>$ 4 $<$ /sub $>$ Thin Film Electrode by Pulsed Laser Deposition. Electrochemistry, 2018, 86, 246-249.	0.6	2
119	Mechanochemical Synthesis and Characterization of Metastable Hexagonal Li ₄ SnS ₄ Solid Electrolyte. Inorganic Chemistry, 2018, 57, 9925-9930.	1.9	59
120	Electrochemical Properties of All-solid-state Lithium Batteries with Amorphous FeS <i>_x</i> -based Composite Positive Electrodes Prepared via Mechanochemistry. Electrochemistry, 2018, 86, 175-178.	0.6	14
121	Optical microscopic observation of graphite composite negative electrodes in all-solid-state lithium batteries. Solid State Ionics, 2018, 323, 123-129.	1.3	31
122	Amorphous LiCoO 2 Li 2 SO 4 active materials: Potential positive electrodes for bulk-type all-oxide solid-state lithium batteries with high energy density. Journal of Power Sources, 2017, 348, 1-8.	4.0	29
123	A novel discharge–charge mechanism of a S–P ₂ S ₅ composite electrode without electrolytes in all-solid-state Li/S batteries. Journal of Materials Chemistry A, 2017, 5, 11224-11228.	5.2	48
124	Effects of the microstructure of solid-electrolyte-coated LiCoO ₂ on its discharge properties in all-solid-state lithium batteries. Journal of Materials Chemistry A, 2017, 5, 10658-10668.	5.2	47
125	Structural and Electronic-State Changes of a Sulfide Solid Electrolyte during the Li Deinsertion–Insertion Processes. Chemistry of Materials, 2017, 29, 4768-4774.	3.2	151
126	Electrochemical and structural evaluation for bulk-type all-solid-state batteries using Li4GeS4-Li3PS4 electrolyte coating on LiCoO2 particles. Journal of Power Sources, 2017, 360, 328-335.	4.0	59

#	Article	IF	CITATIONS
127	Preparation and characterization of glass solid electrolytes in the pseudoternary system Li 3 BO 3 -Li 2 SO 4 -Li 2 CO 3. Solid State Ionics, 2017, 308, 68-76.	1.3	40
128	Solution-based sequential modification of LiCoO ₂ particle surfaces with iron(<scp>ii</scp>) oxalate nanolayers. CrystEngComm, 2017, 19, 4175-4181.	1.3	4
129	Li ₂ Sâ€Based Solid Solutions as Positive Electrodes with Full Utilization and Superlong Cycle Life in Allâ€Solidâ€State Li/S Batteries. Advanced Sustainable Systems, 2017, 1, 1700017.	2.7	101
130	All-Solid-State Na/S Batteries with a Na ₃ PS ₄ Electrolyte Operating at Room Temperature. Chemistry of Materials, 2017, 29, 5232-5238.	3.2	126
131	Mechanochemical synthesis of high lithium ion conducting solid electrolytes in a Li2S-P2S5-Li3N system. Solid State Ionics, 2017, 304, 85-89.	1.3	35
132	Lithium–Sulfur Battery Electrolytes. , 2017, , 149-194.		0
133	Analysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries. Journal of Power Sources, 2017, 367, 42-48.	4.0	38
134	Favorable Carbon Conductive Additives in Li ₃ PS ₄ Composite Positive Electrode Prepared by Ball-Milling for All-Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2017, 164, A2804-A2811.	1.3	21
135	Recent progress on interface formation in all-solid-state batteries. Current Opinion in Electrochemistry, 2017, 6, 108-114.	2.5	41
136	Characterization of sulfur nanocomposite electrodes containing phosphorus sulfide for high-capacity all-solid-state Na/S batteries. Solid State Ionics, 2017, 311, 6-13.	1.3	30
137	The crystal structure and sodium disorder of high-temperature polymorph β-Na ₃ PS ₄ . Journal of Materials Chemistry A, 2017, 5, 25025-25030.	5.2	46
138	Direct observation of a non-crystalline state of Li2S–P2S5 solid electrolytes. Scientific Reports, 2017, 7, 4142.	1.6	47
139	Electronic and Ionic Conductivities of LiNi _{1/3} O ₂ -Li ₃ PS ₄ Posit Composite Electrodes for All-Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2017, 164, A3960-A3963.	tive 1.3	47
140	Electrical and mechanical properties of glass and glass-ceramic electrolytes in the system Li ₃ BO ₃ –Li ₂ SO _{4< Journal of the Ceramic Society of Japan, 2017, 125, 433-437.}	/ ឈ5 >.	48
141	Title is missing!. Electrochemistry, 2017, 85, 347-351.	0.6	O
142	Title is missing!. Electrochemistry, 2017, 85, 586-590.	0.6	0
143	Development of Sulfide Solid Electrolytes and Interface Formation Processes for Bulk-Type All-Solid-State Li and Na Batteries. Frontiers in Energy Research, 2016, 4, .	1.2	148
144	Preparation and characterization of Na ₃ 8O ₃ 8O ₃ 9o ₄ glass electrolytes with Na ⁺ ion conductivity prepared by a mechanical milling technique. Journal of Asian Ceramic Societies, 2016, 4, 6-10.	1.0	7

#	Article	IF	CITATIONS
145	Raman Spectroscopy for LiNi _{1/3} 1/31/30 ₂ 0 ₂ 0 ₂ 0 ₂ 0 ₂ 0 ₂ 0 _{0₀}}	.gt;6	20
146	Improved electrochemical performance of amorphous TiS ₃ electrodes compared to its crystal for all-solid-state rechargeable lithium batteries. Journal of the Ceramic Society of Japan, 2016, 124, 242-246.	0.5	14
147	X-ray photoelectron spectroscopy for sulfide glass electrolytes in the systems Li ₂ 5–P ₂ S ₅ and Li ₂ S–P ₂ S ₅ –LiBr. lournal of the Ceramic Society of Japan, 2016, 124, 597-601.	0.5	30
148	Mechanochemical synthesis and crystallization of Li ₃ BO ₃ 4 ₂ CO _{3< glass electrolytes. Journal of the Ceramic Society of Japan, 2016, 124, 915-919.}	/ ឈ5 >	27
149	Investigation of State-of-charge Distributions for LiCoO ₂ Composite Positive Electrodes in All-solid-state Lithium Batteries by Raman Imaging. Chemistry Letters, 2016, 45, 810-812.	0.7	25
150	Amorphous TiS ₃ /S/C Composite Positive Electrodes with High Capacity for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2016, 163, A1730-A1735.	1.3	7
151	Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films. Journal of Power Sources, 2016, 309, 27-32.	4.0	97
152	Structure analyses using X-ray photoelectron spectroscopy and X-ray absorption near edge structure for amorphous MS3 (M: Ti, Mo) electrodes in all-solid-state lithium batteries. Journal of Power Sources, 2016, 313, 104-111.	4.0	36
153	Soft mechanochemical synthesis and electrochemical behavior of LiVMoO6 for all-solid-state lithium batteries. Journal of Materials Science, 2016, 51, 3574-3584.	1.7	2
154	Raman imaging for LiCoO2 composite positive electrodes in all-solid-state lithium batteries using Li2S–P2S5 solid electrolytes. Journal of Power Sources, 2016, 302, 419-425.	4.0	93
155	5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte. Solid State Ionics, 2016, 285, 79-82.	1.3	116
156	Fabrication of all-solid-state lithium secondary batteries with amorphous TiS4 positive electrodes and Li7La3Zr2O12 solid electrolytes. Solid State Ionics, 2016, 285, 122-125.	1.3	30
157	Synthesis of Sulfide-Based Solid Electrolytes and Construction of the Interfaces in Bulk-Type All-Solid-State Batteries Using Liquid-Phase Techniques. Journal of the Japan Society of Colour Material, 2016, 89, 300-305.	0.0	1
158	Thio-oxynitride phosphate glass electrolytes prepared by mechanical milling. Journal of Materials Research, 2015, 30, 2940-2948.	1.2	8
159	B22-P-14Observation of Li2S-P2S5crystalline glass by transmission electron microscopy. Microscopy (Oxford, England), 2015, 64, i109.2-i109.	0.7	O
160	Sodium-ion Conducting Na3PS4 Electrolyte Synthesized via a Liquid-phase Process Using <i>N</i> -Methylformamide. Chemistry Letters, 2015, 44, 884-886.	0.7	35
161	Highly Utilized Lithium Sulfide Active Material by Enhancing Conductivity in All-solid-state Batteries. Chemistry Letters, 2015, 44, 1664-1666.	0.7	45
162	Preparation of Composites with LiCoPO ₄ Electrode and LiTi ₂ (PO ₄) ₃ Electrolyte for Bulk-type All-solid-state Lithium Batteries. Electrochemistry, 2015, 83, 898-901.	0.6	10

#	Article	IF	CITATIONS
163	Structure Analyses of Amorphous MoS ₃ Active Materials in All-solid-state Lithium Batteries. Electrochemistry, 2015, 83, 889-893.	0.6	29
164	Preparation of Li ₄ Ti ₅ O ₁₂ electrode thin films by a mist CVD process with aqueous precursor solution. Journal of Asian Ceramic Societies, 2015, 3, 88-91.	1.0	13
165	Application of LiCoO ₂ Particles Coated with Lithium Ortho-Oxosalt Thin Films to Sulfide-Type All-Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2015, 162, A1610-A1616.	1.3	58
166	All-solid-state lithium batteries with Li3PS4 glass as active material. Journal of Power Sources, 2015, 293, 721-725.	4.0	95
167	Improvement of Rate Performance for All-Solid-State Na ₁₅ Sn ₄ /Amorphous TiS ₃ Cells Using 94Na ₃ PS ₄ ·6Na ₄ SiS ₄ Glass-Ceramic Electrolytes. Iournal of the Electrochemical Society. 2015. 162. A793-A795.	1.3	30
168	Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries. Journal of Power Sources, 2015, 293, 941-945.	4.0	209
169	Liquid-phase step-by-step growth of an iron cyanide coordination framework on LiCoO ₂ particle surfaces. Dalton Transactions, 2015, 44, 15279-15285.	1.6	8
170	Electrochemical properties of all-solid-state lithium batteries with amorphous MoS ₃ electrodes prepared by mechanical milling. Journal of Materials Chemistry A, 2015, 3, 14142-14147.	5 . 2	60
171	Evaluation of mechanical properties of Na ₂ S–P ₂ S ₅ sulfide glass electrolytes. Journal of Materials Chemistry A, 2015, 3, 22061-22065.	5.2	59
172	Preparation of sodium ion conducting Na3PS4–NaI glasses by a mechanochemical technique. Solid State Ionics, 2015, 270, 6-9.	1.3	32
173	Preparation of lithium ion conductive Al-doped Li7La3Zr2O12 thin films by a sol–gel process. Journal of Power Sources, 2015, 273, 844-847.	4.0	81
174	All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity. Journal of Power Sources, 2015, 275, 284-287.	4.0	61
175	Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium–sulfur batteries. Journal of Power Sources, 2015, 274, 471-476.	4.0	88
176	Preparation of Li 3 BO 3 –Li 2 SO 4 glass–ceramic electrolytes for all-oxide lithium batteries. Journal of Power Sources, 2014, 270, 603-607.	4.0	92
177	Sulfide Glassâ€Ceramic Electrolytes for Allâ€Solidâ€State Lithium and Sodium Batteries. International Journal of Applied Glass Science, 2014, 5, 226-235.	1.0	144
178	Development of Glass-Based Solid Electrolytes for Lithium-Ion Batteries. Nanostructure Science and Technology, 2014, , 63-80.	0.1	1
179	Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries. Journal of Alloys and Compounds, 2014, 591, 247-250.	2.8	118
180	Preparation of Li2S–P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery. Journal of Power Sources, 2014, 248, 939-942.	4.0	92

#	Article	IF	CITATIONS
181	Preparation of LiMn2O4 cathode thin films for thin film lithium secondary batteries by a mist CVD process. Materials Research Bulletin, 2014, 53, 196-198.	2.7	13
182	High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4. Journal of Power Sources, 2014, 258, 420-423.	4.0	244
183	Preparation and electrochemical characterization of (100Ââ^'Âx)(0.7Li2SÂ-0.3P2S5)·xLiBr glass–ceramic electrolytes. Materials for Renewable and Sustainable Energy, 2014, 3, 1.	1.5	21
184	Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries. Journal of Materials Chemistry A, 2014, 2, 5095.	5.2	138
185	A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy and Environmental Science, 2014, 7, 627-631.	15.6	994
186	Li4Ti5O12 thin-film electrodes by in-situ synthesis of lithium alkoxide for Li-ion microbatteries. Electrochimica Acta, 2014, 149, 293-299.	2.6	18
187	Preparation conditions of NiS active material in high-boiling solvents for all-solid-state lithium secondary batteries. New Journal of Chemistry, 2014, 38, 1731-1737.	1.4	10
188	Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling. Journal of Power Sources, 2014, 269, 260-265.	4.0	76
189	Xâ€ray Crystal Structure Analysis of Sodiumâ€lon Conductivity in 94 Na ₃ PS ₄ â<6 Na ₄ SiS ₄ Glassâ€Ceramic Electrolyt ChemElectroChem, 2014, 1, 1130-1132.	e s. 7	85
190	Chalcogenide glasses as electrolytes for batteries. , 2014, , 632-654.		5
191	Low temperature synthesis of Al-doped Li7La3Zr2O12 solid electrolyte by a sol–gel process. Solid State lonics, 2014, 255, 104-107.	1.3	106
192	Preparation of magnesium ion conducting MgS–P2S5–MgI2 glasses by a mechanochemical technique. Solid State Ionics, 2014, 262, 601-603.	1.3	37
193	Preparation of composite electrode with Li2S–P2S5 glasses as active materials for all-solid-state lithium secondary batteries. Solid State Ionics, 2014, 262, 147-150.	1.3	26
194	Preparation and characterization of highly sodium ion conducting Na ₃ PS ₄ –Na ₄ SiS ₄ solid electrolytes. RSC Advances, 2014, 4, 17120-17123.	1.7	156
195	Conductivity of 70Li2S·30P2S5 glasses and glass–ceramics added with lithium halides. Solid State lonics, 2014, 263, 57-61.	1.3	41
196	Electrochemical oxygen separation using hydroxide ion conductive layered double hydroxides. Solid State lonics, 2014, 262, 238-240.	1.3	14
197	Bulk-type All-solid-state Lithium Secondary Batteries Using Highly Ion-conductive Sulfide Solid Electrolyte Thin Films. Electrochemistry, 2014, 82, 591-594.	0.6	10
198	Li ₄ GeS ₄ –Li ₃ PS ₄ electrolyte thin films with highly ion-conductive crystals prepared by pulsed laser deposition. Journal of the Ceramic Society of Japan, 2014, 122, 341-345.	0.5	15

#	ARTICLE	IF	CITATIONS
199	Evaluation of young's modulus of Li ₂ S–P ₂ S ₅ –P ₂ oxysulfide glass solid electrolytes. Journal of the Ceramic Society of Japan, 2014, 122, 552-555.	O <sub{< td=""><td>&gt;5</sul</td></sub{<>	&g t; 5</sul
200	Glass Ion Conductors for Solid-State Lithium Batteries. , 2014, , 946-950.		0
201	Synthesis of monodispersed lithium silicate particles using the sol–gel method. Journal of Sol-Gel Science and Technology, 2013, 65, 41-45.	1.1	5
202	Electrochemical properties of all-solid-state lithium batteries with amorphous titanium sulfide electrodes prepared by mechanical milling. Journal of Solid State Electrochemistry, 2013, 17, 2697-2701.	1.2	21
203	Suppression of H2S gas generation from the 75Li2S·25P2S5 glass electrolyte by additives. Journal of Materials Science, 2013, 48, 4137-4142.	1.7	78
204	All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling. Journal of Solid State Electrochemistry, 2013, 17, 2551-2557.	1.2	47
205	Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery. Scientific Reports, 2013, 3, 2261.	1.6	702
206	Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles. Journal of Materials Chemistry A, 2013, 1, 6320.	5.2	164
207	High Rate Performance, Wide Temperature Operation and Long Cyclability of All-Solid-State Rechargeable Lithium Batteries Using Mo-S Chevrel-Phase Compound. Journal of the Electrochemical Society, 2013, 160, A819-A823.	1.3	28
208	In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte. Physical Chemistry Chemical Physics, 2013, 15, 18600.	1.3	233
209	Improvement of electrochemical performance in alkaline fuel cell by hydroxide ion conducting Ni–Al layered double hydroxide. Journal of Power Sources, 2013, 222, 493-497.	4.0	65
210	Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. Journal of Asian Ceramic Societies, 2013, 1, 17-25.	1.0	375
211	Characteristics of the Li2O–Li2S–P2S5 glasses synthesized by the two-step mechanical milling. Journal of Non-Crystalline Solids, 2013, 364, 57-61.	1.5	118
212	Preparation and ionic conductivities of (100Ââ^'Âx)(0.75Li2S·0.25P2S5)·xLiBH4 glass electrolytes. Journal of Power Sources, 2013, 244, 707-710.	4.0	85
213	All-solid-state lithium secondary batteries using the 75Li2S·25P2S5 glass and the 70Li2S·30P2S5 glass–ceramic as solid electrolytes. Journal of Power Sources, 2013, 233, 231-235.	4.0	157
214	Electrochemical performance of all-solid-state lithium batteries with Sn4P3 negative electrode. Journal of Power Sources, 2013, 244, 597-600.	4.0	46
215	Preparation of Li2S–GeS2 solid electrolyte thin films using pulsed laser deposition. Solid State Ionics, 2013, 236, 1-4.	1.3	23
216	All-Solid-State Lithium Secondary Batteries Using NiS-Carbon Fiber Composite Electrodes Coated with Li ₂ Sâ€"P _{S_{S_{Solid Electrolytes by Pulsed Laser Deposition. ACS Applied Materials & Deposition.}}}	4.0	64

#	Article	IF	CITATIONS
217	Low temperature synthesis of highly ion conductive Li7La3Zr2O12–Li3BO3 composites. Electrochemistry Communications, 2013, 33, 51-54.	2.3	119
218	Electrochemical Performance of Allâ€Solidâ€State Li/S Batteries with Sulfurâ€Based Composite Electrodes Prepared by Mechanical Milling at High Temperature. Energy Technology, 2013, 1, 186-192.	1.8	83
219	Preparation and ionic conductivity of (100â^'x)(0.8Li2S·0.2P2S5)·xLil glass–ceramic electrolytes. Journal of Solid State Electrochemistry, 2013, 17, 675-680.	1.2	48
220	Multifunctional inorganic electrode materials for high-performance rechargeable metal–air batteries. Journal of Materials Chemistry A, 2013, 1, 6804.	5.2	36
221	Evaluation of elastic modulus of Li ₂ S–P ₂ S ₅ glassy solid electrolyte by ultrasonic sound velocity measurement and compression test. Journal of the Ceramic Society of Japan. 2013. 121. 946-949.	0.5	149
222	Formation of Li2S–P2S5 Solid Electrolyte from <i>N</i> Methylformamide Solution. Chemistry Letters, 2013, 42, 1435-1437.	0.7	32
223	Glass Electrolytes with High Ion Conductivity and High Chemical Stability in the System Lil-Li2O-Li2S-P2S5. Electrochemistry, 2013, 81, 428-431.	0.6	59
224	Bulk-Type Lithium Metal Secondary Battery with Indium Thin Layer at Interface between Li Electrode and Li2S-P2S5 Solid Electrolyte. Electrochemistry, 2012, 80, 734-736.	0.6	76
225	Bulk-Type All-Solid-State Lithium Secondary Battery with Li2S-P2S5 Thin-Film Separator. Electrochemistry, 2012, 80, 839-841.	0.6	9
226	Amorphous Titanium Sulfide Electrode for All-solid-state Rechargeable Lithium Batteries with High Capacity. Chemistry Letters, 2012, 41, 886-888.	0.7	55
227	All-solid-state Lithium Secondary Batteries Using Li2S–P2S5 Solid Electrolytes and LiFePO4 Electrode Particles with Amorphous Surface Layer. Chemistry Letters, 2012, 41, 260-261.	0.7	29
228	Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nature Communications, 2012, 3, 856.	5.8	795
229	Effect of Mg/Al Ratio on Hydroxide Ion Conductivity for Mg–Al Layered Double Hydroxide and Application to Direct Ethanol Fuel Cells. Journal of the Electrochemical Society, 2012, 159, B368-B370.	1.3	31
230	Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery. Electrochemistry Communications, 2012, 22, 177-180.	2.3	115
231	Synthesis of NiS–carbon fiber composites in high-boiling solvent to improve electrochemical performance in all-solid-state lithium secondary batteries. Electrochimica Acta, 2012, 83, 448-453.	2.6	32
232	Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries. Solid State Ionics, 2012, 225, 342-345.	1.3	128
233	High-capacity Li2S–nanocarbon composite electrode for all-solid-state rechargeable lithium batteries. Journal of Materials Chemistry, 2012, 22, 10015.	6.7	240
234	All-solid-state lithium secondary batteries with metal-sulfide-coated LiCoO2 prepared by thermal decomposition of dithiocarbamato complexes. Journal of Materials Chemistry, 2012, 22, 15247.	6.7	50

#	Article	IF	Citations
235	Invited paper: Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes. Electronic Materials Letters, 2012, 8, 199-207.	1.0	74
236	Preparation of amorphous TiS x thin film electrodes by the PLD method and their application to all-solid-state lithium secondary batteries. Journal of Materials Science, 2012, 47, 6601-6606.	1.7	17
237	Structure, ionic conductivity and electrochemical stability of Li2S–P2S5–Lil glass and glass–ceramic electrolytes. Solid State Ionics, 2012, 211, 42-45.	1.3	100
238	Hydroxide ion conduction in Ni–Al layered double hydroxide. Journal of Electroanalytical Chemistry, 2012, 671, 102-105.	1.9	33
239	Synthesis of Needlelike and Platelike SnS Active Materials in High-Boiling Solvents and Their Application to All-Solid-State Lithium Secondary Batteries. Crystal Growth and Design, 2011, 11, 3900-3904.	1.4	32
240	Fabrication of electrode–electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes. Journal of Materials Chemistry, 2011, 21, 118-124.	6.7	138
241	Phase-Selective Synthesis of Nickel Phosphide in High-Boiling Solvent for All-Solid-State Lithium Secondary Batteries. Inorganic Chemistry, 2011, 50, 10820-10824.	1.9	49
242	Synthesis of nanosized nickel sulfide in high-boiling solvent for all-solid-state lithium secondary batteries. Journal of Materials Chemistry, 2011, 21, 2987.	6.7	74
243	Thin Film Electrode Materials Li4Ti5O12and LiCoO2Prepared by Spray Pyrolysis Method. IOP Conference Series: Materials Science and Engineering, 2011, 18, 122004.	0.3	4
244	Substituent effects on the glass transition phenomena of polyorganosilsesquioxane particles prepared by two-step acid-base catalyzed sol-gel process. Journal of the Ceramic Society of Japan, 2011, 173-179.	0.5	2
245	Crystallization Process for Superionic Li7P3S11 Glass-Ceramic Electrolytes. Journal of the American Ceramic Society, 2011, 94, 1779-1783.	1.9	80
246	All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode. Journal of Power Sources, 2011, 196, 6902-6905.	4.0	106
247	Evaluation of ionic conductivity for Mg–Al layered double hydroxide intercalated with inorganic anions. Solid State Ionics, 2011, 192, 185-187.	1.3	74
248	Characterization of solid electrolytes prepared from ionic glass and ionic liquid for all-solid-state lithium batteries. Solid State Ionics, 2011, 192, 126-129.	1.3	15
249	Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte. Electrochimica Acta, 2011, 56, 6055-6059.	2.6	281
250	All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes. Journal of Power Sources, 2011, 196, 6735-6741.	4.0	165
251	Characterization of hybrid electrolytes prepared from the Li2S–P2S5 glasses and alkanediols. Solid State Ionics, 2011, 192, 130-133.	1.3	6
252	Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li2S–P2S5–P2S3 and Li2S–P2S5–P2O5. Solid State Ionics, 2011, 192, 122-125.	1.3	85

#	Article	IF	CITATIONS
253	Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode. Solid State Ionics, 2011, 192, 304-307.	1.3	55
254	Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics, 2011, 182, 116-119.	1.3	414
255	Preparation of amorphous Li4SiO4–Li3PO4 thin films by pulsed laser deposition for all-solid-state lithium secondary batteries. Solid State Ionics, 2011, 182, 59-63.	1.3	72
256	Preparation of needle-like .ALPHAFe2O3 particles and influences of their morphology on the electrochemical behavior in all-solid-state lithium batteries. Journal of the Ceramic Society of Japan, 2010, 118, 326-328.	0.5	2
257	SnP0.94 active material synthesized in high-boiling solvents for all-solid-state lithium batteries. Journal of the Ceramic Society of Japan, 2010, 118, 620-622.	0.5	16
258	Chemical Bonding of Li lons in Li $<$ sub $>$ 7 $<$ /sub $>$ P $<$ sub $>$ 3 $<$ /sub $>$ S $<$ sub $>$ 11 $<$ /sub $>$ Crystal. Journal of the Physical Society of Japan, 2010, 79, 65-68.	0.7	4
259	Preparation and characterization of superionic conducting Li7P3S11 crystal from glassy liquids. Journal of the Ceramic Society of Japan, 2010, 118, 305-308.	0.5	71
260	Development of sulfide glass-ceramic electrolytes for all-solid-state lithium rechargeable batteries. Journal of Solid State Electrochemistry, 2010, 14, 1761-1767.	1.2	56
261	Characterization of Li2S–P2S5–Cu composite electrode for all-solid-state lithium secondary batteries. Journal of Materials Science, 2010, 45, 377-381.	1.7	22
262	Direct Ethanol Fuel Cell Using Hydrotalcite Clay as a Hydroxide Ion Conductive Electrolyte. Advanced Materials, 2010, 22, 4401-4404.	11.1	113
263	Electrochemical performance of all-solid-state lithium secondary batteries improved by the coating of Li2O–TiO2 films on LiCoO2 electrode. Journal of Power Sources, 2010, 195, 599-603.	4.0	41
264	Electrochemical performance of all-solid-state lithium secondary batteries with Li–Ni–Co–Mn oxide positive electrodes. Electrochimica Acta, 2010, 55, 8821-8828.	2.6	80
265	Preparation of proton conducting ionic glasses in the systems CsHSO4–MHSO4 (M=Na, K, Rb). Solid State Ionics, 2010, 181, 187-189.	1.3	12
266	Characterization of proton conducting CsHSO4–CsH2PO4 ionic glasses prepared by the melt-quenching method. Solid State Ionics, 2010, 181, 190-192.	1.3	20
267	Mechanochemical synthesis of Li2S–P2S5 glass electrolytes with lithium salts. Solid State Ionics, 2010, 181, 1505-1509.	1.3	28
268	Preparation of Highly Lithiumâ€lon Conductive 80Li ₂ S·20P ₂ S ₅ Thinâ€Film Electrolytes Using Pulsed Laser Deposition. Journal of the American Ceramic Society, 2010, 93, 765-768.	1.9	46
269	Characterization of Solid Electrolytes Prepared from Li[sub 2]S–P[sub 2]S[sub 5] Glass and Ionic Liquids. Journal of the Electrochemical Society, 2010, 157, A1296.	1.3	7
270	Electrochemical performance of all-solid-state lithium secondary batteries using Li4Ti5O12 electrode and Li2S–P2S5 solid electrolytes. Journal of Materials Research, 2010, 25, 1548-1553.	1.2	6

#	Article	IF	CITATIONS
271	All-Solid-State Lithium Secondary Batteries Using LiMn[sub 2]O[sub 4] Electrode and Li[sub 2]S–P[sub 2]S[sub 5] Solid Electrolyte. Journal of the Electrochemical Society, 2010, 157, A407.	1.3	30
272	Interfacial Observation between LiCoO ₂ Electrode and Li ₂ Sâ^P ₂ S6\sub>Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy. Chemistry of Materials, 2010, 22, 949-956.	3.2	526
273	LiCoO[sub 2] Electrode Particles Coated with Li[sub 2]S–P[sub 2]S[sub 5] Solid Electrolyte for All-Solid-State Batteries. Electrochemical and Solid-State Letters, 2010, 13, A73.	2.2	69
274	Preparation and ionic conductivity of Li7P3S11â^'z glass-ceramic electrolytes. Journal of Non-Crystalline Solids, 2010, 356, 2670-2673.	1.5	104
275	Preparation and characterization of lithium ion conducting Li2S–P2S5–GeS2 glasses and glass-ceramics. Journal of Non-Crystalline Solids, 2010, 356, 2666-2669.	1.5	36
276	Structure and properties of Li2S–P2S5–P2S3 glass and glass–ceramic electrolytes. Journal of Power Sources, 2009, 189, 651-654.	4.0	39
277	All-solid-state lithium secondary batteries using nanocomposites of NiS electrode/Li2S–P2S5 electrolyte prepared via mechanochemical reaction. Journal of Power Sources, 2009, 189, 629-632.	4.0	66
278	Characterization of all-solid-state lithium secondary batteries using CuxMo6S8â^'y electrode and Li2Sâ€"P2S5 solid electrolyte. Journal of Power Sources, 2009, 189, 672-675.	4.0	33
279	Electrochemical performance of NiP2 negative electrodes in all-solid-state lithium secondary batteries. Journal of Power Sources, 2009, 189, 669-671.	4.0	36
280	High-rate performance of all-solid-state lithium secondary batteries using Li4Ti5O12 electrode. Journal of Power Sources, 2009, 189, 145-148.	4.0	49
281	All-solid-state lithium secondary batteries with oxide-coated LiCoO2 electrode and Li2S–P2S5 electrolyte. Journal of Power Sources, 2009, 189, 527-530.	4.0	104
282	SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS Electrolytes: Glass. , 2009, , 138-144.		2
283	Modification of Interface Between LiCoO[sub 2] Electrode and Li[sub 2]S–P[sub 2]S[sub 5] Solid Electrolyte Using Li[sub 2]O–SiO[sub 2] Glassy Layers. Journal of the Electrochemical Society, 2009, 156, A27.	1.3	150
284	High lithium ion conduction of sulfide glass-based solid electrolytes and their application to all-solid-state batteries. Journal of Non-Crystalline Solids, 2009, 355, 1919-1923.	1.5	35
285	Proton-Conductive Inorganic–Organic Hybrid Membrane Prepared from 3-(2-Aminoethylaminopropyl)triethoxysilane and Sulfuric Acid by the Sol-Gel Method. Journal of the Electrochemical Society, 2009, 156, B174.	1.3	7
286	Electrochemical Analysis of Li[sub 4]Ti[sub 5]O[sub 12] Electrode in All-Solid-State Lithium Secondary Batteries. Journal of the Electrochemical Society, 2009, 156, A114.	1.3	30
287	Electrical and electrochemical properties of the 70Li2S·(30 â^'x)P2S5·xP2O5 glass-ceramic electrolytes. Solid State Ionics, 2008, 179, 1282-1285.	1.3	43
288	Electrochemical performance of all-solid-state lithium batteries with mechanochemically activated Li2S–Cu composite electrodes. Solid State Ionics, 2008, 179, 1702-1705.	1.3	52

#	Article	IF	Citations
289	Formation of Li+ superionic crystals from the Li2S–P2S5 melt-quenched glasses. Journal of Materials Science, 2008, 43, 1885-1889.	1.7	43
290	Structural change and proton conductivity of phosphosilicate gel–polyimide composite membrane for a fuel cell operated at 180 °C. Journal of Membrane Science, 2008, 324, 188-191.	4.1	14
291	All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material. Journal of Power Sources, 2008, 183, 422-426.	4.0	168
292	Mechanochemical synthesis of \hat{l}_{\pm} -Fe2O3 nanoparticles and their application to all-solid-state lithium batteries. Journal of Power Sources, 2008, 183, 418-421.	4.0	20
293	Proton conductive inorganic–organic hybrid membranes prepared from 3-aminopropyltriethoxysilane and phosphoric acid by the sol–gel method. Solid State Ionics, 2008, 179, 1151-1154.	1.3	17
294	Novel technique to form electrode–electrolyte nanointerface in all-solid-state rechargeable lithium batteries. Electrochemistry Communications, 2008, 10, 1860-1863.	2.3	62
295	Preparation of lithium ion conducting glasses and glass–ceramics for all-solid-state batteries. Journal of Non-Crystalline Solids, 2008, 354, 1411-1417.	1.5	50
296	Electrochemical performance and structural change during charge–discharge reaction of SnO–P2O5 glassy electrodes in rechargeable lithium batteries. Journal of Non-Crystalline Solids, 2008, 354, 380-385.	1.5	22
297	Structure and properties of the 70Li2S · (30 â°'x)P2S5·xP2O5 oxysulfide glasses and glass–ceramics. Journal of Non-Crystalline Solids, 2008, 354, 370-373.	1.5	62
298	Glass transition and thermal softening of poly(phenylsilsesquioxane) particles prepared using two-step acid–base catalyzed sol–gel process. Journal of Non-Crystalline Solids, 2008, 354, 700-704.	1.5	6
299	Improvement of High-Rate Performance of All-Solid-State Lithium Secondary Batteries Using LiCoO[sub 2] Coated with Li[sub 2]O–SiO[sub 2] Glasses. Electrochemical and Solid-State Letters, 2008, 11, A1.	2.2	131
300	ALL-SOLID-STATE LITHIUM SECONDARY, BATTERIES USING SULFIDE-BASED GLASS CERAMIC ELECTROLYTES. Functional Materials Letters, 2008, 01, 31-36.	0.7	37
301	Preparation of α-Fe[sub 2]O[sub 3] Electrode Materials via Solution Process and Their Electrochemical Properties in All-Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2007, 154, A725.	1.3	41
302	Effects of Phenyltriethoxysilane Concentration in Starting Solutions on Thermal Properties of Polyphenylsilsesquioxane Particles Prepared by a Two-Step Acid-Base Catalyzed Sol-Gel Process. Journal of the Ceramic Society of Japan, 2007, 115, 131-135.	1.3	13
303	Preparation and Characterization of Glassy Materials for All-Solid-State Lithium Secondary Batteries (Review). Journal of the Ceramic Society of Japan, 2007, 115, 110-117.	1.3	17
304	Preparation and Characterization of Polyaminophenylsilsesquioxane Particles by Two-step Acidâ∈"Base-catalyzed Solâ∈"Gel Process. Chemistry Letters, 2007, 36, 324-325.	0.7	5
305	Structure of Polyphenylsilsesquioxane Particles Prepared by Two-Step Acid-Base Catalyzed Sol–Gel Process and Formation of Hollow Particles. Journal of Nanoscience and Nanotechnology, 2007, 7, 3307-3312.	0.9	7
306	Crystal structure of a superionic conductor, Li7P3S11. Solid State Ionics, 2007, 178, 1163-1167.	1.3	325

#	Article	IF	CITATIONS
307	Inorganic–organic hybrid membranes prepared from 3-aminopropyltriethoxysilane and sulfuric acid as anhydrous proton conductors. Solid State Ionics, 2007, 178, 705-708.	1.3	13
308	Lithium ion conductivity of the Li2S–P2S5 glass-based electrolytes prepared by the melt quenching method. Solid State Ionics, 2007, 178, 837-841.	1.3	122
309	Thermoplastic and thermosetting properties of polyphenylsilsesquioxane particles prepared by two-step acid-base catalyzed sol-gel process. Journal of Sol-Gel Science and Technology, 2007, 41, 217-222.	1.1	35
310	Fabrication of convex-shaped polybenzylsilsesquioxane micropatterns by the electrophoretic sol–gel deposition process using indium tin oxide substrates with a hydrophobic-hydrophilic-patterned surface. Journal of Sol-Gel Science and Technology, 2007, 43, 85-91.	1.1	5
311	All-solid-state rechargeable lithium batteries using SnX-P2X5 (X = S and O) amorphous negative electrodes. Research on Chemical Intermediates, 2006, 32, 497-506.	1.3	7
312	Inorganicâ-'Organic Hybrid Membranes with Anhydrous Proton Conduction Prepared from 3-Aminopropyltriethoxysilane and Sulfuric Acid by the Solâ-'Gel Method. Journal of the American Chemical Society, 2006, 128, 16470-16471.	6.6	70
313	Formation of convex shaped poly(phenylsilsesquioxane) micropatterns on indium tin oxide substrates with hydrophobic-hydrophilic patterns using the electrophoretic sol-gel deposition method. Journal of Materials Research, 2006, 21, 1255-1260.	1.2	10
314	Micropatterning of Transparent Poly(Benzylsilsesquioxane) Thick Films Prepared by the Electrophoretic Sol?Gel Deposition Process Using a Hydrophobic?Hydrophilic-Patterned Surface. Journal of the American Ceramic Society, 2006, 89, 3832-3835.	1.9	6
315	High rate performances of all-solid-state In/LiCoO2 cells with the Li2S–P2S5 glass–ceramic electrolytes. Solid State Ionics, 2006, 177, 2731-2735.	1.3	20
316	High lithium ion conducting glass-ceramics in the system Li2S–P2S5. Solid State Ionics, 2006, 177, 2721-2725.	1.3	294
317	Lithium ion conducting solid electrolytes prepared from Li2S, elemental P and S. Solid State Ionics, 2006, 177, 2753-2757.	1.3	27
318	Preparation of proton conductive composites with CsHSO4/CsH2PO4 and phosphosilicate gel. Solid State Ionics, 2006, 177, 2463-2466.	1.3	18
319	Formation of electrode–electrolyte interface by lithium insertion to SnS–P2S5 negative electrode materials in all-solid-state cells. Solid State Ionics, 2006, 177, 2737-2740.	1.3	17
320	Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. Solid State Ionics, 2006, 177, 2715-2720.	1.3	251
321	All-solid-state lithium secondary batteries using sulfide-based glass–ceramic electrolytes. Journal of Power Sources, 2006, 159, 193-199.	4.0	123
322	Mechanochemical synthesis of hybrid electrolytes from the Li2S–P2S5 glasses and polyethers. Journal of Power Sources, 2006, 163, 289-293.	4.0	21
323	All-solid-state lithium secondary batteries with SnS–P2S5 negative electrodes and Li2S–P2S5 solid electrolytes. Journal of Power Sources, 2005, 146, 496-500.	4.0	26
324	Electrical and electrochemical properties of Li2S–P2S5–P2O5 glass–ceramic electrolytes. Journal of Power Sources, 2005, 146, 715-718.	4.0	42

#	Article	IF	CITATIONS
325	Design of composite positive electrode in all-solid-state secondary batteries with Li2S-P2S5 glassâ€"ceramic electrolytes. Journal of Power Sources, 2005, 146, 711-714.	4.0	57
326	Utilization of glass paper as a support of proton conductive inorganic–organic hybrid membranes based on 3-glycidoxypropyltrimethoxysilane. Electrochemistry Communications, 2005, 7, 245-248.	2.3	28
327	Preparation of proton conductive composites with cesium hydrogen sulfate and phosphosilicate gel. Solid State Ionics, 2005, 176, 2909-2912.	1.3	18
328	Utilization of glass papers as a support for proton conducting inorganic–organic hybrid membranes from 3-glycidoxypropyltrimethoxysilane, tetraalkoxysilane and orthophosphoric acid. Solid State lonics, 2005, 176, 3001-3004.	1.3	17
329	New, Highly Ion-Conductive Crystals Precipitated from Li2S-P2S5 Glasses. Advanced Materials, 2005, 17, 918-921.	11.1	759
330	Physical Chemistry of Ionic Liquids, Inorganic and Organic, Protic and Aprotic., 2005, , 5-23.		17
331	Mechanochemical synthesis of lithium ion conducting glasses and glass–ceramics in the system Li2S–P–S. Solid State Ionics, 2005, 176, 2349-2353.	1.3	31
332	Effects of Conductive Additives in Composite Positive Electrodes on Charge-Discharge Behaviors of All-Solid-State Lithium Secondary Batteries. Journal of the Electrochemical Society, 2005, 152, A1499.	1.3	56
333	New Lithium-lon Conducting Crystal Obtained by Crystallization of the Li[sub 2]S–P[sub 2]S[sub 5] Glasses. Electrochemical and Solid-State Letters, 2005, 8, A603.	2.2	67
334	Amorphous solid electrolytes in the system Li2S-Al2S3-SiS2prepared by mechanical milling. Journal of Materials Science, 2004, 39, 5125-5127.	1.7	13
335	Mechanochemical synthesis of SnO-B2O3glassy anode materials for rechargeable lithium batteries. Journal of Materials Science, 2004, 39, 5361-5364.	1.7	16
336	Mechanochemical synthesis of amorphous solid electrolytes using SiS2 and various lithium compounds. Solid State Ionics, 2004, 175, 637-640.	1.3	10
337	Rechargeable lithium batteries, using sulfur-based cathode materials and Li2S–P2S5 glass-ceramic electrolytes. Electrochimica Acta, 2004, 50, 893-897.	2.6	73
338	All-solid-state lithium secondary batteries using Li2S?SiS2?Li4SiO4 glasses and Li2S?P2S5 glass ceramics as solid electrolytes. Solid State Ionics, 2004, 175, 699-702.	1.3	24
339	Characterization of Li2S?P2S5 glass-ceramics as a solid electrolyte for lithium secondary batteries. Solid State Ionics, 2004, 175, 683-686.	1.3	122
340	Preparation and characterization of SnO–P2O5 glasses as anode materials for lithium secondary batteries. Journal of Non-Crystalline Solids, 2004, 345-346, 478-483.	1.5	58
341	All Solid-State Lithium Secondary Batteries Using High Lithium Ion Conducting Li2Sâ€"P2S5 Glass-Ceramics ChemInform, 2003, 34, no.	0.1	0
342	Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses. Electrochemistry Communications, 2003, 5, 111-114.	2.3	306

#	Article	IF	Citations
343	All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochemistry Communications, 2003, 5, 701-705.	2.3	302
344	All-solid-state lithium secondary batteries using a layer-structured LiNi0.5Mn0.5O2 cathode material. Journal of Power Sources, 2003, 124, 170-173.	4.0	29
345	Ionic conductivities of hybrid inorganic sulfide–polyether electrolytes. Electrochimica Acta, 2003, 48, 2003-2008.	2.6	9
346	High Conductivity of Superionic-Glass-in-Ionic-Liquid Solutions. Electrochemical and Solid-State Letters, 2003, 6, E19.	2.2	23
347	Fast Lithium-lon Conducting Glass-Ceramics in the System Li[sub 2]S-SiS[sub 2]-P[sub 2]S[sub 5]. Electrochemical and Solid-State Letters, 2003, 6, A47.	2.2	28
348	Structural Studies in Lithium Insertion into SnO-B[sub 2]O[sub 3] Glasses and Their Applications for All-Solid-State Batteries. Journal of the Electrochemical Society, 2003, 150, A582.	1.3	32
349	Cycle Performance of All-solid-state In/LiCoO ₂ Batteries with Li ₂ S-P ₂ 5 Glass-ceramic Electrolytes. Electrochemistry, 2003, 71, 1196-1200.	0.6	5
350	Cathode Properties of Amorphous 66.7V ₂ O ₅ • 33.3FeOOH Powders Obtained by Mechanical Milling Technique. Electrochemistry, 2003, 71, 1036-1038.	0.6	1
351	Preparation of LiCoPO ₄ for Lithium Battery Cathodes through Solution Process. Electrochemistry, 2003, 71, 1192-1195.	0.6	28
352	All Solid-state Lithium Secondary Batteries Using High Lithium Ion Conducting Li2S–P2S5Glass-Ceramics. Chemistry Letters, 2002, 31, 1244-1245.	0.7	77
353	Mechanochemical Synthesis of High Lithium Ion Conducting Materials in the System Li3Nâ^'SiS2. Chemistry of Materials, 2002, 14, 2444-2449.	3.2	26
354	Structural investigation of SnO–B2O3 glasses by solid-state NMR and X-ray photoelectron spectroscopy. Journal of Non-Crystalline Solids, 2002, 306, 227-237.	1.5	42
355	Structure and properties of glasses in the system Li2O–SnO–B2O3. Comptes Rendus Chimie, 2002, 5, 751-757.	0.2	9
356	Characterization of Li2S–SiS2–Li3MO3 (M=B, Al, Ga and In) oxysulfide glasses and their application to solid state lithium secondary batteries. Solid State Ionics, 2002, 152-153, 285-290.	1.3	46
357	Solid electrolyte composed of 95(0.6Li2S·0.4SiS2)·5Li4SiO4 glass and high molecular weight branched poly(oxyethylene). Solid State Ionics, 2002, 154-155, 1-6.	1.3	10
358	New lithium ion conducting glass-ceramics prepared from mechanochemical Li2S–P2S5 glasses. Solid State Ionics, 2002, 154-155, 635-640.	1.3	111
359	Characterization of Li2S–SiS2–LixMOy (M=Si, P, Ge) amorphous solid electrolytes prepared by melt-quenching and mechanical milling. Solid State Ionics, 2002, 148, 381-389.	1.3	67
360	Electronic states calculated by the DV-Xα cluster method for lithium ion conductive Li2S–SiS2–Li4SiO4 oxysulfide glasses. Journal of Non-Crystalline Solids, 2001, 288, 1-7.	1.5	7

#	Article	IF	CITATIONS
361	Preparation and Characterization of Lithium Ion Conducting Glass–Polymer Composites. Chemistry Letters, 2001, 30, 814-815.	0.7	7
362	High Lithium Ion Conductivity of Glass–Ceramics Derived from Mechanically Milled Glassy Powders. Chemistry Letters, 2001, 30, 872-873.	0.7	63
363	Preparation and Characterization of SnO-Based Glasses as Anode Materials for Lithium Secondary Batteries Journal of the Ceramic Society of Japan, 2001, 109, 1010-1016.	1.3	19
364	Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100â°'x)(0.6Li2S·0.4SiS2)·xLi4SiO4 obtained by mechanochemical synthesis. Solid State Ionics, 2001, 140, 83-87.	1.3	76
365	Ion conducting composites from Li 2 S–SiS 2 –Li 4 SiO 4 oxysulfide glass and poly(oxyethylene)s. Polymer, 2001, 42, 7225-7228.	1.8	11
366	Preparation of Li ₂ S–P ₂ S ₅ Amorphous Solid Electrolytes by Mechanical Milling. Journal of the American Ceramic Society, 2001, 84, 477-79.	1.9	350
367	DEVELOPMENT OF LITHIUM ION CONDUCTING OXYSULFIDE GLASSES. , 2000, , .		2
368	Formation Process of 60Li2S 40SiS2 Amorphous Materials with High Lithium Ion Conductivity Prepared by Mechanical Milling Journal of the Ceramic Society of Japan, 2000, 108, 973-978.	1.3	11
369	Preparation and characterization of lithium ion-conducting oxysulfide glasses. Solid State Ionics, 2000, 136-137, 1015-1023.	1.3	91
370	Preparation and structure of amorphous solid electrolytes based on lithium sulfide. Journal of Non-Crystalline Solids, 2000, 274, 30-38.	1.5	55
371	Crystallization process of lithium oxysulfide glasses. Journal of Non-Crystalline Solids, 2000, 276, 27-34.	1.5	11
372	Electrochemical Properties for the Lithium Ion Conductive (100â€x )  ( 0.6Li2 S   Glasses. Journal of the Electrochemical Society, 1999, 146, 3472-3475.	0.49	3i <u>\$2</u>)â€
373	Structural Change Accompanying Crystallization in the Lithium Ion Conductive Li2S-SiS2-Li3PO4 Oxysulfide Glasses Journal of the Ceramic Society of Japan, 1999, 107, 510-516.	1.3	14
374	Thermal and electrical properties of rapidly quenched Li2S-SiS2-Li2O-P2O5 oxysulfide glasses. Solid State Ionics, 1998, 113-115, 733-738.	1.3	11
375	Structural Investigation of 95(0.6Li×sub>235(0.6Li×sub>460.6Li×sub>460.6Li×sub>60.4SiS60.4SiS60.4SiS7.3€ Fay Photoelectron Spectroscopy. Journal of the American Ceramic Society, 1998, 81, 1305-1309.	1.9	27
376	Preparation of Li6Si2S7-Li6B4X9 (X = S, O) glasses by rapid quenching and their lithium ion conductivities. Solid State Ionics, 1996, 86-88, 539-542.	1.3	5