Akitoshi Hayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2156798/publications.pdf

Version: 2024-02-01

376 papers 21,660 citations

75 h-index 131 g-index

386 all docs

386 docs citations

386 times ranked 8660 citing authors

#	Article	IF	CITATIONS
1	A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy and Environmental Science, 2014, 7, 627-631.	30.8	994
2	Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nature Communications, 2012, 3, 856.	12.8	795
3	New, Highly Ion-Conductive Crystals Precipitated from Li2S-P2S5 Glasses. Advanced Materials, 2005, 17, 918-921.	21.0	759
4	Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery. Scientific Reports, 2013, 3, 2261.	3.3	702
5	Interfacial Observation between LiCoO ₂ Electrode and Li ₂ Sâ^'P ₂ Scondary Batteries Using Transmission Electron Microscopy. Chemistry of Materials, 2010, 22, 949-956.	6.7	526
6	Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics, 2011, 182, 116-119.	2.7	414
7	Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. Journal of Asian Ceramic Societies, 2013, 1, 17-25.	2.3	375
8	Preparation of Li ₂ S–P ₂ S ₅ Amorphous Solid Electrolytes by Mechanical Milling. Journal of the American Ceramic Society, 2001, 84, 477-79.	3.8	350
9	Crystal structure of a superionic conductor, Li7P3S11. Solid State Ionics, 2007, 178, 1163-1167.	2.7	325
10	Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses. Electrochemistry Communications, 2003, 5, 111-114.	4.7	306
11	All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochemistry Communications, 2003, 5, 701-705.	4.7	302
12	High lithium ion conducting glass-ceramics in the system Li2S–P2S5. Solid State Ionics, 2006, 177, 2721-2725.	2.7	294
13	Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte. Electrochimica Acta, 2011, 56, 6055-6059.	5. 2	281
14	Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. Solid State Ionics, 2006, 177, 2715-2720.	2.7	251
15	High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4. Journal of Power Sources, 2014, 258, 420-423.	7.8	244
16	High-capacity Li2S–nanocarbon composite electrode for all-solid-state rechargeable lithium batteries. Journal of Materials Chemistry, 2012, 22, 10015.	6.7	240
17	Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nature Reviews Chemistry, 2019, 3, 189-198.	30.2	238
18	In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte. Physical Chemistry Chemical Physics, 2013, 15, 18600.	2.8	233

#	Article	IF	CITATIONS
19	A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nature Communications, 2019, 10, 5266.	12.8	216
20	Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries. Journal of Power Sources, 2015, 293, 941-945.	7.8	209
21	All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material. Journal of Power Sources, 2008, 183, 422-426.	7.8	168
22	All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes. Journal of Power Sources, 2011, 196, 6735-6741.	7.8	165
23	Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles. Journal of Materials Chemistry A, 2013, 1, 6320.	10.3	164
24	All-solid-state lithium secondary batteries using the 75Li2S·25P2S5 glass and the 70Li2S·30P2S5 glass–ceramic as solid electrolytes. Journal of Power Sources, 2013, 233, 231-235.	7.8	157
25	Preparation and characterization of highly sodium ion conducting Na ₃ PS ₄ –Na ₄ SiS ₄ solid electrolytes. RSC Advances, 2014, 4, 17120-17123.	3.6	156
26	Structural and Electronic-State Changes of a Sulfide Solid Electrolyte during the Li Deinsertion–Insertion Processes. Chemistry of Materials, 2017, 29, 4768-4774.	6.7	151
27	Modification of Interface Between LiCoO[sub 2] Electrode and Li[sub 2]S–P[sub 2]S[sub 5] Solid Electrolyte Using Li[sub 2]O–SiO[sub 2] Glassy Layers. Journal of the Electrochemical Society, 2009, 156, A27.	2.9	150
28	Evaluation of elastic modulus of Li ₂ S–P ₂ S ₅ glassy solid electrolyte by ultrasonic sound velocity measurement and compression test. Journal of the Ceramic Society of Japan, 2013, 121, 946-949.	1.1	149
29	Development of Sulfide Solid Electrolytes and Interface Formation Processes for Bulk-Type All-Solid-State Li and Na Batteries. Frontiers in Energy Research, 2016, 4, .	2.3	148
30	Sulfide Glassâ€Ceramic Electrolytes for Allâ€Solidâ€State Lithium and Sodium Batteries. International Journal of Applied Glass Science, 2014, 5, 226-235.	2.0	144
31	Fabrication of electrode–electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes. Journal of Materials Chemistry, 2011, 21, 118-124.	6.7	138
32	Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries. Journal of Materials Chemistry A, 2014, 2, 5095.	10.3	138
33	Improvement of High-Rate Performance of All-Solid-State Lithium Secondary Batteries Using LiCoO[sub 2] Coated with Li[sub 2]O–SiO[sub 2] Glasses. Electrochemical and Solid-State Letters, 2008, 11, A1.	2.2	131
34	Multimodal Plant Healthcare Flexible Sensor System. ACS Nano, 2020, 14, 10966-10975.	14.6	129
35	Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries. Solid State Ionics, 2012, 225, 342-345.	2.7	128
36	An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol. Journal of Materials Chemistry A, 2019, 7, 558-566.	10.3	127

#	Article	IF	Citations
37	All-Solid-State Na/S Batteries with a Na ₃ PS ₄ Electrolyte Operating at Room Temperature. Chemistry of Materials, 2017, 29, 5232-5238.	6.7	126
38	Mechanical Properties of Li ₂ S–P ₂ S ₅ Glasses with Lithium Halides and Application in All-Solid-State Batteries. ACS Applied Energy Materials, 2018, 1, 1002-1007.	5.1	126
39	All-solid-state lithium secondary batteries using sulfide-based glass–ceramic electrolytes. Journal of Power Sources, 2006, 159, 193-199.	7.8	123
40	Characterization of Li2S?P2S5 glass-ceramics as a solid electrolyte for lithium secondary batteries. Solid State Ionics, 2004, 175, 683-686.	2.7	122
41	Lithium ion conductivity of the Li2S–P2S5 glass-based electrolytes prepared by the melt quenching method. Solid State Ionics, 2007, 178, 837-841.	2.7	122
42	Low temperature synthesis of highly ion conductive Li7La3Zr2O12–Li3BO3 composites. Electrochemistry Communications, 2013, 33, 51-54.	4.7	119
43	Characteristics of the Li2O–Li2S–P2S5 glasses synthesized by the two-step mechanical milling. Journal of Non-Crystalline Solids, 2013, 364, 57-61.	3.1	118
44	Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries. Journal of Alloys and Compounds, 2014, 591, 247-250.	5.5	118
45	XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries. Solid State Ionics, 2018, 322, 1-4.	2.7	118
46	5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte. Solid State Ionics, 2016, 285, 79-82.	2.7	116
47	Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery. Electrochemistry Communications, 2012, 22, 177-180.	4.7	115
48	Direct Ethanol Fuel Cell Using Hydrotalcite Clay as a Hydroxide Ion Conductive Electrolyte. Advanced Materials, 2010, 22, 4401-4404.	21.0	113
49	New lithium ion conducting glass-ceramics prepared from mechanochemical Li2S–P2S5 glasses. Solid State Ionics, 2002, 154-155, 635-640.	2.7	111
50	All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode. Journal of Power Sources, 2011, 196, 6902-6905.	7.8	106
51	Low temperature synthesis of Al-doped Li7La3Zr2O12 solid electrolyte by a sol–gel process. Solid State lonics, 2014, 255, 104-107.	2.7	106
52	All-solid-state lithium secondary batteries with oxide-coated LiCoO2 electrode and Li2S–P2S5 electrolyte. Journal of Power Sources, 2009, 189, 527-530.	7.8	104
53	Preparation and ionic conductivity of Li7P3S11â^z glass-ceramic electrolytes. Journal of Non-Crystalline Solids, 2010, 356, 2670-2673.	3.1	104
54	Lithium-Ion-Conducting Argyrodite-Type Li ₆ PS ₅ X (X = Cl, Br, I) Solid Electrolytes Prepared by a Liquid-Phase Technique Using Ethanol as a Solvent. ACS Applied Energy Materials, 2018, 1, 3622-3629.	5.1	103

#	Article	IF	CITATIONS
55	Li ₂ Sâ€Based Solid Solutions as Positive Electrodes with Full Utilization and Superlong Cycle Life in Allâ€Solidâ€State Li/S Batteries. Advanced Sustainable Systems, 2017, 1, 1700017.	5.3	101
56	Structure, ionic conductivity and electrochemical stability of Li2S–P2S5–Lil glass and glass–ceramic electrolytes. Solid State Ionics, 2012, 211, 42-45.	2.7	100
57	How Certain Are the Reported Ionic Conductivities of Thiophosphate-Based Solid Electrolytes? An Interlaboratory Study. ACS Energy Letters, 2020, 5, 910-915.	17.4	98
58	Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films. Journal of Power Sources, 2016, 309, 27-32.	7.8	97
59	All-solid-state lithium batteries with Li3PS4 glass as active material. Journal of Power Sources, 2015, 293, 721-725.	7.8	95
60	Raman imaging for LiCoO2 composite positive electrodes in all-solid-state lithium batteries using Li2S–P2S5 solid electrolytes. Journal of Power Sources, 2016, 302, 419-425.	7.8	93
61	Preparation of Li 3 BO 3 –Li 2 SO 4 glass–ceramic electrolytes for all-oxide lithium batteries. Journal of Power Sources, 2014, 270, 603-607.	7.8	92
62	Preparation of Li2S–P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery. Journal of Power Sources, 2014, 248, 939-942.	7.8	92
63	Preparation and characterization of lithium ion-conducting oxysulfide glasses. Solid State Ionics, 2000, 136-137, 1015-1023.	2.7	91
64	Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium–sulfur batteries. Journal of Power Sources, 2015, 274, 471-476.	7.8	88
65	Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li2S–P2S5–P2S3 and Li2S–P2S5–P2O5. Solid State Ionics, 2011, 192, 122-125.	2.7	85
66	Preparation and ionic conductivities of $(100 \hat{A} \hat{a}^{2} \hat{A} x)(0.75 \text{Li}2S \hat{A} \cdot 0.25 \text{P2S5}) \hat{A} \cdot x \text{LiBH4}$ glass electrolytes. Journal of Power Sources, 2013, 244, 707-710.	7.8	85
67	Xâ€ray Crystal Structure Analysis of Sodium″on Conductivity in 94 Na ₃ PS ₄ â<6 Na ₄ SiS ₄ Glass eramic Electrolyt ChemElectroChem, 2014, 1, 1130-1132.	e 3. 4	85
68	Electrochemical Performance of Allâ€Solidâ€State Li/S Batteries with Sulfurâ€Based Composite Electrodes Prepared by Mechanical Milling at High Temperature. Energy Technology, 2013, 1, 186-192.	3.8	83
69	Lithium dissolution/deposition behavior with Li3PS4-Lil electrolyte for all-solid-state batteries operating at high temperatures. Electrochimica Acta, 2018, 286, 158-162.	5.2	83
70	Preparation of lithium ion conductive Al-doped Li7La3Zr2O12 thin films by a sol–gel process. Journal of Power Sources, 2015, 273, 844-847.	7.8	81
71	Electrochemical performance of all-solid-state lithium secondary batteries with Li–Ni–Co–Mn oxide positive electrodes. Electrochimica Acta, 2010, 55, 8821-8828.	5.2	80
72	Crystallization Process for Superionic Li7P3S11 Glass-Ceramic Electrolytes. Journal of the American Ceramic Society, 2011, 94, 1779-1783.	3.8	80

#	Article	IF	Citations
73	Suppression of H2S gas generation from the 75Li2S·25P2S5 glass electrolyte by additives. Journal of Materials Science, 2013, 48, 4137-4142.	3.7	78
74	All Solid-state Lithium Secondary Batteries Using High Lithium Ion Conducting Li2S–P2S5Glass-Ceramics. Chemistry Letters, 2002, 31, 1244-1245.	1.3	77
75	Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100â°'x)(0.6Li2S·0.4SiS2)·xLi4SiO4 obtained by mechanochemical synthesis. Solid State Ionics, 2001, 140, 83-87.	2.7	76
76	Bulk-Type Lithium Metal Secondary Battery with Indium Thin Layer at Interface between Li Electrode and Li2S-P2S5 Solid Electrolyte. Electrochemistry, 2012, 80, 734-736.	1.4	76
77	Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling. Journal of Power Sources, 2014, 269, 260-265.	7.8	76
78	Mechanical properties of sulfide glasses in all-solid-state batteries. Journal of the Ceramic Society of Japan, 2018, 126, 719-727.	1.1	75
79	Synthesis of nanosized nickel sulfide in high-boiling solvent for all-solid-state lithium secondary batteries. Journal of Materials Chemistry, 2011, 21, 2987.	6.7	74
80	Evaluation of ionic conductivity for Mg–Al layered double hydroxide intercalated with inorganic anions. Solid State Ionics, 2011, 192, 185-187.	2.7	74
81	Invited paper: Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes. Electronic Materials Letters, 2012, 8, 199-207.	2.2	74
82	Rechargeable lithium batteries, using sulfur-based cathode materials and Li2S–P2S5 glass-ceramic electrolytes. Electrochimica Acta, 2004, 50, 893-897.	5.2	73
83	Preparation of amorphous Li4SiO4–Li3PO4 thin films by pulsed laser deposition for all-solid-state lithium secondary batteries. Solid State Ionics, 2011, 182, 59-63.	2.7	72
84	Preparation and characterization of superionic conducting Li7P3S11 crystal from glassy liquids. Journal of the Ceramic Society of Japan, 2010, 118, 305-308.	1.1	71
85	Inorganicâ^'Organic Hybrid Membranes with Anhydrous Proton Conduction Prepared from 3-Aminopropyltriethoxysilane and Sulfuric Acid by the Solâ^'Gel Method. Journal of the American Chemical Society, 2006, 128, 16470-16471.	13.7	70
86	LiCoO[sub 2] Electrode Particles Coated with Li[sub 2]S–P[sub 2]S[sub 5] Solid Electrolyte for All-Solid-State Batteries. Electrochemical and Solid-State Letters, 2010, 13, A73.	2.2	69
87	Liquidâ€phase sintering of highly Na ⁺ ion conducting Na ₃ Zr ₂ Si ₂ PO ₁₂ ceramics using Na ₃ BO ₃ additive. Journal of the American Ceramic Society, 2018, 101, 1255-1265.	3.8	69
88	Characterization of Li2S–SiS2–LixMOy (M=Si, P, Ge) amorphous solid electrolytes prepared by melt-quenching and mechanical milling. Solid State Ionics, 2002, 148, 381-389.	2.7	67
89	New Lithium-Ion Conducting Crystal Obtained by Crystallization of the Li[sub 2]S–P[sub 2]S[sub 5] Glasses. Electrochemical and Solid-State Letters, 2005, 8, A603.	2.2	67
90	Preparation and characterization of lithium ion conductive Li3SbS4 glass and glass-ceramic electrolytes. Solid State Ionics, 2019, 333, 45-49.	2.7	67

#	Article	IF	CITATIONS
91	All-solid-state lithium secondary batteries using nanocomposites of NiS electrode/Li2S–P2S5 electrolyte prepared via mechanochemical reaction. Journal of Power Sources, 2009, 189, 629-632.	7.8	66
92	Improvement of electrochemical performance in alkaline fuel cell by hydroxide ion conducting Ni–Al layered double hydroxide. Journal of Power Sources, 2013, 222, 493-497.	7.8	65
93	All-Solid-State Lithium Secondary Batteries Using NiS-Carbon Fiber Composite Electrodes Coated with Li ₂ S–P ₂ S ₅ Solid Electrolytes by Pulsed Laser Deposition. ACS Applied Materials & Deposition.	8.0	64
94	High Lithium Ion Conductivity of Glass–Ceramics Derived from Mechanically Milled Glassy Powders. Chemistry Letters, 2001, 30, 872-873.	1.3	63
95	Novel technique to form electrode–electrolyte nanointerface in all-solid-state rechargeable lithium batteries. Electrochemistry Communications, 2008, 10, 1860-1863.	4.7	62
96	Structure and properties of the 70Li2S · (30 â^²x)P2S5·xP2O5 oxysulfide glasses and glass–ceramics. Journal of Non-Crystalline Solids, 2008, 354, 370-373.	3.1	62
97	All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity. Journal of Power Sources, 2015, 275, 284-287.	7.8	61
98	Electrochemical properties of all-solid-state lithium batteries with amorphous MoS ₃ electrodes prepared by mechanical milling. Journal of Materials Chemistry A, 2015, 3, 14142-14147.	10.3	60
99	Glass Electrolytes with High Ion Conductivity and High Chemical Stability in the System Lil-Li2O-Li2S-P2S5. Electrochemistry, 2013, 81, 428-431.	1.4	59
100	Evaluation of mechanical properties of Na ₂ S–P ₂ S ₅ sulfide glass electrolytes. Journal of Materials Chemistry A, 2015, 3, 22061-22065.	10.3	59
101	Electrochemical and structural evaluation for bulk-type all-solid-state batteries using Li4GeS4-Li3PS4 electrolyte coating on LiCoO2 particles. Journal of Power Sources, 2017, 360, 328-335.	7.8	59
102	Mechanochemical Synthesis and Characterization of Metastable Hexagonal Li ₄ SnS ₄ Solid Electrolyte. Inorganic Chemistry, 2018, 57, 9925-9930.	4.0	59
103	Preparation and characterization of SnO–P2O5 glasses as anode materials for lithium secondary batteries. Journal of Non-Crystalline Solids, 2004, 345-346, 478-483.	3.1	58
104	Application of LiCoO ₂ Particles Coated with Lithium Ortho-Oxosalt Thin Films to Sulfide-Type All-Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2015, 162, A1610-A1616.	2.9	58
105	Design of composite positive electrode in all-solid-state secondary batteries with Li2S-P2S5 glass–ceramic electrolytes. Journal of Power Sources, 2005, 146, 711-714.	7.8	57
106	Effects of Conductive Additives in Composite Positive Electrodes on Charge-Discharge Behaviors of All-Solid-State Lithium Secondary Batteries. Journal of the Electrochemical Society, 2005, 152, A1499.	2.9	56
107	Development of sulfide glass-ceramic electrolytes for all-solid-state lithium rechargeable batteries. Journal of Solid State Electrochemistry, 2010, 14, 1761-1767.	2.5	56
108	Preparation and structure of amorphous solid electrolytes based on lithium sulfide. Journal of Non-Crystalline Solids, 2000, 274, 30-38.	3.1	55

#	Article	IF	CITATIONS
109	Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode. Solid State Ionics, 2011, 192, 304-307.	2.7	55
110	Amorphous Titanium Sulfide Electrode for All-solid-state Rechargeable Lithium Batteries with High Capacity. Chemistry Letters, 2012, 41, 886-888.	1.3	55
111	Morphological Effect on Reaction Distribution Influenced by Binder Materials in Composite Electrodes for Sheet-type All-Solid-State Lithium-Ion Batteries with the Sulfide-based Solid Electrolyte. Journal of Physical Chemistry C, 2019, 123, 3292-3298.	3.1	53
112	Electrochemical Properties for the Lithium Ion Conductive (100â€x )  ( 0.6Li2 S  ÂGlasses. Journal of the Electrochemical Society, 1999, 146, 3472-3475.	- 0.4S 2.9	iiS2 )â€ 52
113	Electrochemical performance of all-solid-state lithium batteries with mechanochemically activated Li2S–Cu composite electrodes. Solid State Ionics, 2008, 179, 1702-1705.	2.7	52
114	Preparation of lithium ion conducting glasses and glass–ceramics for all-solid-state batteries. Journal of Non-Crystalline Solids, 2008, 354, 1411-1417.	3.1	50
115	All-solid-state lithium secondary batteries with metal-sulfide-coated LiCoO2 prepared by thermal decomposition of dithiocarbamato complexes. Journal of Materials Chemistry, 2012, 22, 15247.	6.7	50
116	Visualization and Control of Chemically Induced Crack Formation in All-Solid-State Lithium-Metal Batteries with Sulfide Electrolyte. ACS Applied Materials & Samp; Interfaces, 2021, 13, 5000-5007.	8.0	50
117	High-rate performance of all-solid-state lithium secondary batteries using Li4Ti5O12 electrode. Journal of Power Sources, 2009, 189, 145-148.	7.8	49
118	Phase-Selective Synthesis of Nickel Phosphide in High-Boiling Solvent for All-Solid-State Lithium Secondary Batteries. Inorganic Chemistry, 2011, 50, 10820-10824.	4.0	49
119	Preparation and ionic conductivity of (100â^'x)(0.8Li2S·0.2P2S5)·xLil glassâ€"ceramic electrolytes. Journal of Solid State Electrochemistry, 2013, 17, 675-680.	2.5	48
120	A novel discharge–charge mechanism of a S–P ₂ S ₅ composite electrode without electrolytes in all-solid-state Li/S batteries. Journal of Materials Chemistry A, 2017, 5, 11224-11228.	10.3	48
121	Electrical and mechanical properties of glass and glass-ceramic electrolytes in the system Li ₃ BO ₃ –Li ₂ SO _{4<!-- Journal of the Ceramic Society of Japan, 2017, 125, 433-437.</td--><td>aub>.</td><td>48</td>}	aub>.	48
122	All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling. Journal of Solid State Electrochemistry, 2013, 17, 2551-2557.	2.5	47
123	Effects of the microstructure of solid-electrolyte-coated LiCoO ₂ on its discharge properties in all-solid-state lithium batteries. Journal of Materials Chemistry A, 2017, 5, 10658-10668.	10.3	47
124	Direct observation of a non-crystalline state of Li2S–P2S5 solid electrolytes. Scientific Reports, 2017, 7, 4142.	3.3	47
125	Electronic and Ionic Conductivities of LiNi _{1/3} Co _{1/3} O ₂ -Li ₃ PS ₄ Posit Composite Electrodes for All-Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2017, 164, A3960-A3963.	ive 2.9	47
126	Aqueous solution synthesis of Na ₃ SbS ₄ –Na ₂ WS ₄ superionic conductors. Journal of Materials Chemistry A, 2020, 8, 1947-1954.	10.3	47

#	Article	IF	CITATIONS
127	Characterization of Li2S–SiS2–Li3MO3 (M=B, Al, Ga and In) oxysulfide glasses and their application to solid state lithium secondary batteries. Solid State Ionics, 2002, 152-153, 285-290.	2.7	46
128	Preparation of Highly Lithium″on Conductive 80Li ₂ S·20P ₂ S ₅ Thinâ€Film Electrolytes Using Pulsed Laser Deposition. Journal of the American Ceramic Society, 2010, 93, 765-768.	3.8	46
129	Electrochemical performance of all-solid-state lithium batteries with Sn4P3 negative electrode. Journal of Power Sources, 2013, 244, 597-600.	7.8	46
130	The crystal structure and sodium disorder of high-temperature polymorph β-Na ₃ PS ₄ . Journal of Materials Chemistry A, 2017, 5, 25025-25030.	10.3	46
131	Highly Utilized Lithium Sulfide Active Material by Enhancing Conductivity in All-solid-state Batteries. Chemistry Letters, 2015, 44, 1664-1666.	1.3	45
132	Low temperature sintering of Na1+Zr2Si P3â^'O12 by the addition of Na3BO3. Scripta Materialia, 2018, 145, 67-70.	5.2	44
133	High-Temperature Performance of All-Solid-State Lithium-Metal Batteries Having Li/Li ₃ PS ₄ Interfaces Modified with Au Thin Films. Journal of the Electrochemical Society, 2018, 165, A1950-A1954.	2.9	44
134	<i>Operando</i> Confocal Microscopy for Dynamic Changes of Li ⁺ Ion Conduction Path in Graphite Electrode Layers of All-Solid-State Batteries. Journal of Physical Chemistry Letters, 2020, 11, 900-904.	4.6	44
135	Electrical and electrochemical properties of the 70Li2S·(30 â^²x)P2S5·xP2O5 glass-ceramic electrolytes. Solid State Ionics, 2008, 179, 1282-1285.	2.7	43
136	Formation of Li+ superionic crystals from the Li2S–P2S5 melt-quenched glasses. Journal of Materials Science, 2008, 43, 1885-1889.	3.7	43
137	Structural investigation of SnO–B2O3 glasses by solid-state NMR and X-ray photoelectron spectroscopy. Journal of Non-Crystalline Solids, 2002, 306, 227-237.	3.1	42
138	Electrical and electrochemical properties of Li2S–P2S5–P2O5 glass–ceramic electrolytes. Journal of Power Sources, 2005, 146, 715-718.	7.8	42
139	Preparation of α-Fe[sub 2]O[sub 3] Electrode Materials via Solution Process and Their Electrochemical Properties in All-Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2007, 154, A725.	2.9	41
140	Electrochemical performance of all-solid-state lithium secondary batteries improved by the coating of Li2O–TiO2 films on LiCoO2 electrode. Journal of Power Sources, 2010, 195, 599-603.	7.8	41
141	Conductivity of 70Li2S·30P2S5 glasses and glass–ceramics added with lithium halides. Solid State lonics, 2014, 263, 57-61.	2.7	41
142	Evaluation of young's modulus of Li ₂ S–P ₂ S ₅ –P _{2oxysulfide glass solid electrolytes. Journal of the Ceramic Society of Japan, 2014, 122, 552-555.}	;O <sub< td=""><td>&gt;15</sub</td></sub<>	&g t;1 5</sub
143	Recent progress on interface formation in all-solid-state batteries. Current Opinion in Electrochemistry, 2017, 6, 108-114.	4.8	41
144	Mechanochemically Prepared Li ₂ S–P ₂ S ₅ –LiBH ₄ Solid Electrolytes with an Argyrodite Structure. ACS Omega, 2018, 3, 5453-5458.	3.5	41

#	Article	IF	CITATIONS
145	Preparation and characterization of glass solid electrolytes in the pseudoternary system Li 3 BO 3 -Li 2 SO 4 -Li 2 CO 3. Solid State Ionics, 2017, 308, 68-76.	2.7	40
146	Structure and properties of Li2S–P2S5–P2S3 glass and glass–ceramic electrolytes. Journal of Power Sources, 2009, 189, 651-654.	7.8	39
147	Analysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries. Journal of Power Sources, 2017, 367, 42-48.	7.8	38
148	Effect of introducing interlayers into electrode/electrolyte interface in all-solid-state battery using sulfide electrolyte. Solid State Ionics, 2018, 327, 150-156.	2.7	38
149	Sulfurâ∈Based Composite Electrode with Interconnected Mesoporous Carbon for Allâ€Solidâ€State Lithium–Sulfur Batteries. Energy Technology, 2019, 7, 1900077.	3.8	38
150	ALL-SOLID-STATE LITHIUM SECONDARY, BATTERIES USING SULFIDE-BASED GLASS CERAMIC ELECTROLYTES. Functional Materials Letters, 2008, 01, 31-36.	1.2	37
151	Preparation of magnesium ion conducting MgS–P2S5–MgI2 glasses by a mechanochemical technique. Solid State Ionics, 2014, 262, 601-603.	2.7	37
152	Electrochemical performance of NiP2 negative electrodes in all-solid-state lithium secondary batteries. Journal of Power Sources, 2009, 189, 669-671.	7.8	36
153	Preparation and characterization of lithium ion conducting Li2S–P2S5–GeS2 glasses and glass-ceramics. Journal of Non-Crystalline Solids, 2010, 356, 2666-2669.	3.1	36
154	Multifunctional inorganic electrode materials for high-performance rechargeable metal–air batteries. Journal of Materials Chemistry A, 2013, 1, 6804.	10.3	36
155	Structure analyses using X-ray photoelectron spectroscopy and X-ray absorption near edge structure for amorphous MS3 (M: Ti, Mo) electrodes in all-solid-state lithium batteries. Journal of Power Sources, 2016, 313, 104-111.	7.8	36
156	Thermoplastic and thermosetting properties of polyphenylsilsesquioxane particles prepared by two-step acid-base catalyzed sol-gel process. Journal of Sol-Gel Science and Technology, 2007, 41, 217-222.	2.4	35
157	High lithium ion conduction of sulfide glass-based solid electrolytes and their application to all-solid-state batteries. Journal of Non-Crystalline Solids, 2009, 355, 1919-1923.	3.1	35
158	Sodium-ion Conducting Na3PS4 Electrolyte Synthesized via a Liquid-phase Process Using <i>N</i> -Methylformamide. Chemistry Letters, 2015, 44, 884-886.	1.3	35
159	Mechanochemical synthesis of high lithium ion conducting solid electrolytes in a Li2S-P2S5-Li3N system. Solid State lonics, 2017, 304, 85-89.	2.7	35
160	Preparation of Sodium Ion Conductive Na ₁₀ GeP ₂ S ₁₂ Glass-ceramic Electrolytes. Chemistry Letters, 2018, 47, 13-15.	1.3	35
161	A reversible oxygen redox reaction in bulk-type all-solid-state batteries. Science Advances, 2020, 6, eaax7236.	10.3	34
162	Characterization of all-solid-state lithium secondary batteries using CuxMo6S8â^'y electrode and Li2Sâ€"P2S5 solid electrolyte. Journal of Power Sources, 2009, 189, 672-675.	7.8	33

#	Article	IF	Citations
163	Hydroxide ion conduction in Ni–Al layered double hydroxide. Journal of Electroanalytical Chemistry, 2012, 671, 102-105.	3.8	33
164	First-Principles Calculation Study of Na ⁺ Superionic Conduction Mechanism in W- and Mo-Doped Na ₃ SbS ₄ Solid Electrolytes. Chemistry of Materials, 2020, 32, 8373-8381.	6.7	33
165	High Ionic Conductivity of Liquid-Phase-Synthesized Li ₃ PS ₄ Solid Electrolyte, Comparable to That Obtained via Ball Milling. ACS Applied Energy Materials, 2021, 4, 2275-2281.	5.1	33
166	Structural Studies in Lithium Insertion into SnO-B[sub 2]O[sub 3] Glasses and Their Applications for All-Solid-State Batteries. Journal of the Electrochemical Society, 2003, 150, A582.	2.9	32
167	Synthesis of Needlelike and Platelike SnS Active Materials in High-Boiling Solvents and Their Application to All-Solid-State Lithium Secondary Batteries. Crystal Growth and Design, 2011, 11, 3900-3904.	3.0	32
168	Synthesis of NiS–carbon fiber composites in high-boiling solvent to improve electrochemical performance in all-solid-state lithium secondary batteries. Electrochimica Acta, 2012, 83, 448-453.	5.2	32
169	Formation of Li2S–P2S5 Solid Electrolyte from <i>N</i> Methylformamide Solution. Chemistry Letters, 2013, 42, 1435-1437.	1.3	32
170	Preparation of sodium ion conducting Na3PS4–NaI glasses by a mechanochemical technique. Solid State Ionics, 2015, 270, 6-9.	2.7	32
171	Mechanochemical synthesis of lithium ion conducting glasses and glass–ceramics in the system Li2S–P–S. Solid State Ionics, 2005, 176, 2349-2353.	2.7	31
172	Effect of Mg/Al Ratio on Hydroxide Ion Conductivity for Mg–Al Layered Double Hydroxide and Application to Direct Ethanol Fuel Cells. Journal of the Electrochemical Society, 2012, 159, B368-B370.	2.9	31
173	Optical microscopic observation of graphite composite negative electrodes in all-solid-state lithium batteries. Solid State Ionics, 2018, 323, 123-129.	2.7	31
174	Electrochemical Analysis of Li[sub 4]Ti[sub 5]O[sub 12] Electrode in All-Solid-State Lithium Secondary Batteries. Journal of the Electrochemical Society, 2009, 156, A114.	2.9	30
175	All-Solid-State Lithium Secondary Batteries Using LiMn[sub 2]O[sub 4] Electrode and Li[sub 2]S–P[sub 2]S[sub 5] Solid Electrolyte. Journal of the Electrochemical Society, 2010, 157, A407.	2.9	30
176	Improvement of Rate Performance for All-Solid-State Na ₁₅ Sn ₄ /Amorphous TiS ₃ Cells Using 94Na ₃ PS ₄ ·6Na ₄ SiS ₄ Glass-Ceramic Electrolytes. Journal of the Electrochemical Society, 2015, 162, A793-A795.	2.9	30
177	X-ray photoelectron spectroscopy for sulfide glass electrolytes in the systems Li ₂ 5–P ₂ 55 and Li ₂ S–P ₂ 5 ₅ –LiBr. Journal of the Ceramic Society of Japan. 2016. 124. 597-601.	1.1	30
178	Fabrication of all-solid-state lithium secondary batteries with amorphous TiS4 positive electrodes and Li7La3Zr2O12 solid electrolytes. Solid State Ionics, 2016, 285, 122-125.	2.7	30
179	Characterization of sulfur nanocomposite electrodes containing phosphorus sulfide for high-capacity all-solid-state Na/S batteries. Solid State Ionics, 2017, 311, 6-13.	2.7	30
180	Crystallization behavior of the Li2S–P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer. Scientific Reports, 2018, 8, 6214.	3.3	30

#	Article	IF	CITATIONS
181	Investigation of the Suppression of Dendritic Lithium Growth with a Lithium-Iodide-Containing Solid Electrolyte. Chemistry of Materials, 2021, 33, 4907-4914.	6.7	30
182	All-solid-state lithium secondary batteries using a layer-structured LiNi0.5Mn0.5O2 cathode material. Journal of Power Sources, 2003, 124, 170-173.	7.8	29
183	All-solid-state Lithium Secondary Batteries Using Li2S–P2S5 Solid Electrolytes and LiFePO4 Electrode Particles with Amorphous Surface Layer. Chemistry Letters, 2012, 41, 260-261.	1.3	29
184	Structure Analyses of Amorphous MoS ₃ Active Materials in All-solid-state Lithium Batteries. Electrochemistry, 2015, 83, 889-893.	1.4	29
185	Amorphous LiCoO 2 Li 2 SO 4 active materials: Potential positive electrodes for bulk-type all-oxide solid-state lithium batteries with high energy density. Journal of Power Sources, 2017, 348, 1-8.	7.8	29
186	Exothermal mechanisms in the charged LiNi1/3Mn1/3Co1/3O2 electrode layers for sulfide-based all-solid-state lithium batteries. Journal of Power Sources, 2019, 434, 226714.	7.8	29
187	Fast Lithium-lon Conducting Glass-Ceramics in the System Li[sub 2]S-SiS[sub 2]-P[sub 2]S[sub 5]. Electrochemical and Solid-State Letters, 2003, 6, A47.	2.2	28
188	Preparation of LiCoPO ₄ for Lithium Battery Cathodes through Solution Process. Electrochemistry, 2003, 71, 1192-1195.	1.4	28
189	Utilization of glass paper as a support of proton conductive inorganic–organic hybrid membranes based on 3-glycidoxypropyltrimethoxysilane. Electrochemistry Communications, 2005, 7, 245-248.	4.7	28
190	Mechanochemical synthesis of Li2S–P2S5 glass electrolytes with lithium salts. Solid State Ionics, 2010, 181, 1505-1509.	2.7	28
191	High Rate Performance, Wide Temperature Operation and Long Cyclability of All-Solid-State Rechargeable Lithium Batteries Using Mo-S Chevrel-Phase Compound. Journal of the Electrochemical Society, 2013, 160, A819-A823.	2.9	28
192	Structural Investigation of 95(0.6Li ₂ 50.4SiS ₂)5Li ₄ SiO ₄ Oxysulfide Glass by Using Xâ€ray Photoelectron Spectroscopy. Journal of the American Ceramic Society, 1998, 81, 1305-1309.	3.8	27
193	Lithium ion conducting solid electrolytes prepared from Li2S, elemental P and S. Solid State Ionics, 2006, 177, 2753-2757.	2.7	27
194	Mechanochemical synthesis and crystallization of Li ₃ 5CO _{3< glass electrolytes. Journal of the Ceramic Society of Japan, 2016, 124, 915-919.}	/audb>	27
195	All-solid-state cells with Li4Ti5O12/carbon nanotube composite electrodes prepared by infiltration with argyrodite sulfide-based solid electrolytes via liquid-phase processing. Journal of Power Sources, 2019, 417, 125-131.	7.8	27
196	Mechanochemical Synthesis of High Lithium Ion Conducting Materials in the System Li3Nâ^'SiS2. Chemistry of Materials, 2002, 14, 2444-2449.	6.7	26
197	All-solid-state lithium secondary batteries with SnS–P2S5 negative electrodes and Li2S–P2S5 solid electrolytes. Journal of Power Sources, 2005, 146, 496-500.	7.8	26
198	Preparation of composite electrode with Li2S–P2S5 glasses as active materials for all-solid-state lithium secondary batteries. Solid State Ionics, 2014, 262, 147-150.	2.7	26

#	Article	IF	Citations
199	Investigation of State-of-charge Distributions for LiCoO ₂ Composite Positive Electrodes in All-solid-state Lithium Batteries by Raman Imaging. Chemistry Letters, 2016, 45, 810-812.	1.3	25
200	Solid Electrolyte with Oxidation Tolerance Provides a Highâ€Capacity Li ₂ Sâ€Based Positive Electrode for Allâ€Solidâ€State Li/S Batteries. Advanced Functional Materials, 2022, 32, 2106174.	14.9	25
201	All-solid-state lithium secondary batteries using Li2S?SiS2?Li4SiO4 glasses and Li2S?P2S5 glass ceramics as solid electrolytes. Solid State Ionics, 2004, 175, 699-702.	2.7	24
202	High Conductivity of Superionic-Glass-in-Ionic-Liquid Solutions. Electrochemical and Solid-State Letters, 2003, 6, E19.	2.2	23
203	Preparation of Li2S–GeS2 solid electrolyte thin films using pulsed laser deposition. Solid State Ionics, 2013, 236, 1-4.	2.7	23
204	Electrochemical performance and structural change during charge–discharge reaction of SnO–P2O5 glassy electrodes in rechargeable lithium batteries. Journal of Non-Crystalline Solids, 2008, 354, 380-385.	3.1	22
205	Characterization of Li2S–P2S5–Cu composite electrode for all-solid-state lithium secondary batteries. Journal of Materials Science, 2010, 45, 377-381.	3.7	22
206	Quantitative analysis of crystallinity in an argyrodite sulfide-based solid electrolyte synthesized via solution processing. RSC Advances, 2019, 9, 14465-14471.	3.6	22
207	Synthesis of Sulfide Solid Electrolytes through the Liquid Phase: Optimization of the Preparation Conditions. ACS Omega, 2020, 5, 26287-26294.	3.5	22
208	Exothermal behavior and microstructure of a LiNi1/3Mn1/3Co1/3O2 electrode layer using a Li4SnS4 solid electrolyte. Journal of Power Sources, 2020, 479, 228827.	7.8	22
209	Preparation and Characterization of Cation-Substituted Na ₃ SbS ₄ Solid Electrolytes. ACS Applied Energy Materials, 2020, 3, 11706-11712.	5.1	22
210	Mechanochemical synthesis of hybrid electrolytes from the Li2S–P2S5 glasses and polyethers. Journal of Power Sources, 2006, 163, 289-293.	7.8	21
211	Electrochemical properties of all-solid-state lithium batteries with amorphous titanium sulfide electrodes prepared by mechanical milling. Journal of Solid State Electrochemistry, 2013, 17, 2697-2701.	2.5	21
212	Preparation and electrochemical characterization of (100Ââ^'Âx)(0.7Li2S·0.3P2S5)·xLiBr glassâ€"ceramic electrolytes. Materials for Renewable and Sustainable Energy, 2014, 3, 1.	3.6	21
213	Favorable Carbon Conductive Additives in Li ₃ PS ₄ Composite Positive Electrode Prepared by Ball-Milling for All-Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2017, 164, A2804-A2811.	2.9	21
214	Improvement of lithium ionic conductivity of Li3PS4 through suppression of crystallization using low-boiling-point solvent in liquid-phase synthesis. Solid State Ionics, 2021, 361, 115568.	2.7	21
215	High rate performances of all-solid-state In/LiCoO2 cells with the Li2S–P2S5 glass–ceramic electrolytes. Solid State Ionics, 2006, 177, 2731-2735.	2.7	20
216	Mechanochemical synthesis of \hat{l}_{\pm} -Fe2O3 nanoparticles and their application to all-solid-state lithium batteries. Journal of Power Sources, 2008, 183, 418-421.	7.8	20

#	Article	IF	Citations
217	Characterization of proton conducting CsHSO4–CsH2PO4 ionic glasses prepared by the melt-quenching method. Solid State Ionics, 2010, 181, 190-192.	2.7	20
218	Raman Spectroscopy for LiNi _{1/3} Mn _{1/3} Co _{1/3} O _{2Composite Positive Electrodes in All-Solid-State Lithium Batteries. Electrochemistry, 2016, 84, 812-814.}	kgt#	20
219	Formation of interfacial contact with ductile Li3BO3-based electrolytes for improving cyclability in all-solid-state batteries. Journal of Power Sources, 2019, 424, 215-219.	7.8	20
220	Preparation and Characterization of SnO-Based Glasses as Anode Materials for Lithium Secondary Batteries Journal of the Ceramic Society of Japan, 2001, 109, 1010-1016.	1.3	19
221	Highly Stable Li/Li ₃ BO ₃ â€"Li ₂ SO ₄ Interface and Application to Bulk-Type All-Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2019, 2, 3042-3048.	5.1	19
222	High-rate operation of sulfur/mesoporous activated carbon composite electrode for all-solid-state lithium-sulfur batteries. Journal of the Ceramic Society of Japan, 2020, 128, 233-237.	1.1	19
223	Preparation and characterization of sodium-ion conductive Na ₃ BS ₃ glass and glass–ceramic electrolytes. Materials Advances, 2021, 2, 1676-1682.	5.4	19
224	Electrode performance of amorphous MoS3 in all-solid-state sodium secondary batteries. Journal of Power Sources Advances, 2021, 10, 100061.	5.1	19
225	Preparation of proton conductive composites with cesium hydrogen sulfate and phosphosilicate gel. Solid State Ionics, 2005, 176, 2909-2912.	2.7	18
226	Preparation of proton conductive composites with CsHSO4/CsH2PO4 and phosphosilicate gel. Solid State Ionics, 2006, 177, 2463-2466.	2.7	18
227	Li4Ti5O12 thin-film electrodes by in-situ synthesis of lithium alkoxide for Li-ion microbatteries. Electrochimica Acta, 2014, 149, 293-299.	5.2	18
228	Capacity Improvement by Nitrogen Doping to Lithium-Rich Cathode Materials with Stabilization Effect of Oxide Ions Redox. ACS Applied Energy Materials, 2020, 3, 4162-4167.	5.1	18
229	Control of Dendritic Growth of the Lithium Metal in All-Solid-State Lithium Metal Batteries: Effect of the Current Collector with Microsized Pores. ACS Applied Materials & Interfaces, 2020, 12, 22798-22803.	8.0	18
230	All-solid-state sodium-sulfur battery showing full capacity with activated carbon MSP20-sulfur-Na3SbS4 composite. Electrochemistry Communications, 2020, 116, 106741.	4.7	18
231	Utilization of glass papers as a support for proton conducting inorganic–organic hybrid membranes from 3-glycidoxypropyltrimethoxysilane, tetraalkoxysilane and orthophosphoric acid. Solid State lonics, 2005, 176, 3001-3004.	2.7	17
232	Physical Chemistry of Ionic Liquids, Inorganic and Organic, Protic and Aprotic., 2005, , 5-23.		17
233	Formation of electrode–electrolyte interface by lithium insertion to SnS–P2S5 negative electrode materials in all-solid-state cells. Solid State Ionics, 2006, 177, 2737-2740.	2.7	17
234	Preparation and Characterization of Glassy Materials for All-Solid-State Lithium Secondary Batteries (Review). Journal of the Ceramic Society of Japan, 2007, 115, 110-117.	1.3	17

#	Article	IF	CITATIONS
235	Proton conductive inorganic–organic hybrid membranes prepared from 3-aminopropyltriethoxysilane and phosphoric acid by the sol–gel method. Solid State Ionics, 2008, 179, 1151-1154.	2.7	17
236	Preparation of amorphous TiS \times thin film electrodes by the PLD method and their application to all-solid-state lithium secondary batteries. Journal of Materials Science, 2012, 47, 6601-6606.	3.7	17
237	Preparation of Na3PS4 electrolyte by liquid-phase process using ether. Solid State Ionics, 2018, 320, 33-37.	2.7	17
238	Thermal behavior and microstructures of cathodes for liquid electrolyte-based lithium batteries. Scientific Reports, 2018, 8, 15613.	3.3	17
239	Suspension synthesis of Na3-PS4-Cl solid electrolytes. Journal of Power Sources, 2019, 428, 131-135.	7.8	17
240	Mechanochemical synthesis and characterization of Na3–Pl–W S4 solid electrolytes. Journal of Power Sources, 2021, 506, 230100.	7.8	17
241	Mechanochemical synthesis of SnO-B ₂ O ₃ glassy anode materials for rechargeable lithium batteries. Journal of Materials Science, 2004, 39, 5361-5364.	3.7	16
242	SnP0.94 active material synthesized in high-boiling solvents for all-solid-state lithium batteries. Journal of the Ceramic Society of Japan, 2010, 118, 620-622.	1.1	16
243	Preparation and characterization of Na3PS4–Na4GeS4 glass and glass-ceramic electrolytes. Solid State Ionics, 2018, 320, 193-198.	2.7	16
244	Characterization of solid electrolytes prepared from ionic glass and ionic liquid for all-solid-state lithium batteries. Solid State Ionics, 2011, 192, 126-129.	2.7	15
245	Li ₄ GeS ₄ –Li ₃ PS ₄ electrolyte thin films with highly ion-conductive crystals prepared by pulsed laser deposition. Journal of the Ceramic Society of Japan, 2014, 122, 341-345.	1.1	15
246	Oxide-Based Composite Electrolytes Using Na ₃ Zr ₂ Si ₂ PO ₁₂ /Na ₃ PS ₄ Interfacial Ion Transfer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19605-19614.	8.0	15
247	Lithium Dissolution/Deposition Behavior of Al-Doped Li ₇ La ₃ Zr ₂ O ₁₂ Ceramics with Different Grain Sizes. Journal of the Electrochemical Society, 2019, 166, A5470-A5473.	2.9	15
248	Preparation of sodium-ion-conductive Na _x SbS _{4â^'} <i>& solid electrolytes. Journal of the Ceramic Society of Japan, 2020, 128, 641-647.</i>	lt ;:su b>:	x
249	Studies on the inhibition of lithium dendrite formation in sulfide solid electrolytes doped with LiX (XÂ=ÂBr, I). Solid State Ionics, 2022, 377, 115869.	2.7	15
250	High Rate Capability from a Graphite Anode through Surface Modification with Lithium Iodide for All-Solid-State Batteries. ACS Applied Energy Materials, 2022, 5, 667-673.	5.1	15
251	Structural Change Accompanying Crystallization in the Lithium Ion Conductive Li2S-SiS2-Li3PO4 Oxysulfide Glasses Journal of the Ceramic Society of Japan, 1999, 107, 510-516.	1.3	14
252	Structural change and proton conductivity of phosphosilicate gel–polyimide composite membrane for a fuel cell operated at 180 °C. Journal of Membrane Science, 2008, 324, 188-191.	8.2	14

#	Article	IF	CITATIONS
253	Electrochemical oxygen separation using hydroxide ion conductive layered double hydroxides. Solid State Ionics, 2014, 262, 238-240.	2.7	14
254	Improved electrochemical performance of amorphous TiS ₃ electrodes compared to its crystal for all-solid-state rechargeable lithium batteries. Journal of the Ceramic Society of Japan, 2016, 124, 242-246.	1.1	14
255	Electrochemical Properties of All-solid-state Lithium Batteries with Amorphous FeS <i>_x</i> -based Composite Positive Electrodes Prepared via Mechanochemistry. Electrochemistry, 2018, 86, 175-178.	1.4	14
256	AC Impedance Analysis of the Degeneration and Recovery of Argyrodite Sulfide-Based Solid Electrolytes under Dry-Room-Simulated Condition. Electrochemistry, 2022, 90, 037012-037012.	1.4	14
257	Formation of Passivate Interphases by Na ₃ BS ₃ -Glass Solid Electrolytes in All-Solid-State Sodium-Metal Batteries. ACS Applied Materials & Solid Electrolytes in All-Solid-State Sodium-Metal Batteries.	8.0	14
258	Amorphous solid electrolytes in the system Li ₂ S-Al ₂ S <aloreal>3-SiS₂prepared by mechanical milling. Journal of Materials Science, 2004, 39, 5125-5127.</aloreal>	3.7	13
259	Effects of Phenyltriethoxysilane Concentration in Starting Solutions on Thermal Properties of Polyphenylsilsesquioxane Particles Prepared by a Two-Step Acid-Base Catalyzed Sol-Gel Process. Journal of the Ceramic Society of Japan, 2007, 115, 131-135.	1.3	13
260	Inorganic–organic hybrid membranes prepared from 3-aminopropyltriethoxysilane and sulfuric acid as anhydrous proton conductors. Solid State Ionics, 2007, 178, 705-708.	2.7	13
261	Preparation of LiMn2O4 cathode thin films for thin film lithium secondary batteries by a mist CVD process. Materials Research Bulletin, 2014, 53, 196-198.	5.2	13
262	Preparation of Li ₄ Ti ₅ O ₁₂ electrode thin films by a mist CVD process with aqueous precursor solution. Journal of Asian Ceramic Societies, 2015, 3, 88-91.	2.3	13
263	New lithium-conducting nitride glass Li3BN2. Solid State Ionics, 2019, 339, 114985.	2.7	13
264	Ex situ investigation of exothermal behavior and structural changes of the Li3PS4- LiNi1/3Mn1/3Co1/3O2 electrode composites. Solid State Ionics, 2019, 342, 115046.	2.7	13
265	Synthesis and Electrochemical Properties of Li ₃ CuS ₂ as a Positive Electrode Material for All-Solid-State Batteries. ACS Applied Energy Materials, 2021, 4, 20-24.	5.1	13
266	Amorphous Li ₂ O–Lil Solid Electrolytes Compatible to Li Metal. Electrochemistry, 2021, 89, 334-336.	1.4	13
267	Preparation of proton conducting ionic glasses in the systems CsHSO4–MHSO4 (M=Na, K, Rb). Solid State Ionics, 2010, 181, 187-189.	2.7	12
268	Amorphization of Sodium Cobalt Oxide Active Materials for High-Capacity All-Solid-State Sodium Batteries. Chemistry of Materials, 2018, 30, 6998-7004.	6.7	12
269	Metastable Materials for All-Solid-State Batteries. Electrochemistry, 2019, 87, 247-250.	1.4	12

Amorphous Niâ€Rich Li(Ni_{1â^²}<i>_x</i>Co<i>_y</i>Positive Electrode Materials for Bulkâ€Type Allâ€Oxide Solidâ€State Batteries. Advanced Materials Interfaces, 2019, 6, 1802016. 270

#	Article	IF	Citations
271	Characteristics of a Li ₃ BS ₃ Thioborate Glass Electrolyte Obtained via a Mechanochemical Process. ACS Applied Energy Materials, 2022, 5, 1421-1426.	5.1	12
272	Thermal and electrical properties of rapidly quenched Li2S-SiS2-Li2O-P2O5 oxysulfide glasses. Solid State Ionics, 1998, 113-115, 733-738.	2.7	11
273	Formation Process of 60Li2S 40SiS2 Amorphous Materials with High Lithium Ion Conductivity Prepared by Mechanical Milling Journal of the Ceramic Society of Japan, 2000, 108, 973-978.	1.3	11
274	Crystallization process of lithium oxysulfide glasses. Journal of Non-Crystalline Solids, 2000, 276, 27-34.	3.1	11
275	lon conducting composites from Li 2 S–SiS 2 –Li 4 SiO 4 oxysulfide glass and poly(oxyethylene)s. Polymer, 2001, 42, 7225-7228.	3.8	11
276	Visualizing Local Electrical Properties of Composite Electrodes in Sulfide All-Solid-State Batteries by Scanning Probe Microscopy. Journal of Physical Chemistry C, 2021, 125, 2841-2849.	3.1	11
277	<i>In situ</i> observation of the deterioration process of sulfide-based solid electrolytes using airtight and air-flow TEM systems. Microscopy (Oxford, England), 2021, 70, 519-525.	1.5	11
278	Synthesis of an All ₃ -doped Li ₂ S positive electrode with superior performance in all-solid-state batteries. Materials Advances, 2022, 3, 2488-2494.	5.4	11
279	Solid electrolyte composed of 95(0.6Li2S·0.4SiS2)·5Li4SiO4 glass and high molecular weight branched poly(oxyethylene). Solid State Ionics, 2002, 154-155, 1-6.	2.7	10
280	Mechanochemical synthesis of amorphous solid electrolytes using SiS2 and various lithium compounds. Solid State Ionics, 2004, 175, 637-640.	2.7	10
281	Formation of convex shaped poly(phenylsilsesquioxane) micropatterns on indium tin oxide substrates with hydrophobic-hydrophilic patterns using the electrophoretic sol-gel deposition method. Journal of Materials Research, 2006, 21, 1255-1260.	2.6	10
282	Preparation conditions of NiS active material in high-boiling solvents for all-solid-state lithium secondary batteries. New Journal of Chemistry, 2014, 38, 1731-1737.	2.8	10
283	Bulk-type All-solid-state Lithium Secondary Batteries Using Highly Ion-conductive Sulfide Solid Electrolyte Thin Films. Electrochemistry, 2014, 82, 591-594.	1.4	10
284	Preparation of Composites with LiCoPO ₄ Electrode and LiTi ₂ (PO ₄ 3 Electrolyte for Bulk-type All-solid-state Lithium Batteries. Electrochemistry, 2015, 83, 898-901.	1.4	10
285	Amorphous LiCoO2-based Positive Electrode Active Materials with Good Formability for All-Solid-State Rechargeable Batteries. MRS Advances, 2018, 3, 1319-1327.	0.9	10
286	Mechanochemical synthesis and characterization of amorphous Li ₂ CN ₂ as a lithium ion conductor. Journal of the Ceramic Society of Japan, 2019, 127, 518-520.	1.1	10
287	Mechanochemical Synthesis of Na-Sb Alloy Negative Electrodes and Their Application to All-solid-state Sodium Batteries. Electrochemistry, 2019, 87, 289-293.	1.4	10
288	Comparison of Sulfur Cathode Reactions between a Concentrated Liquid Electrolyte System and a Solid-State Electrolyte System by Soft X-Ray Absorption Spectroscopy. ACS Applied Energy Materials, 2021, 4, 186-193.	5.1	10

#	Article	IF	Citations
289	Microstructure and Charge–Discharge Mechanism of a Li ₃ CuS ₂ Positive Electrode Material for All-Solid-State Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 6290-6295.	5.1	10
290	Importance of Li-Metal/Sulfide Electrolyte Interphase Ionic Conductivity in Suppressing Short-Circuiting of All-Solid-State Li-Metal Batteries. Journal of the Electrochemical Society, 2021, 168, 060542.	2.9	10
291	Structure and properties of glasses in the system Li2O–SnO–B2O3. Comptes Rendus Chimie, 2002, 5, 751-757.	0.5	9
292	lonic conductivities of hybrid inorganic sulfide–polyether electrolytes. Electrochimica Acta, 2003, 48, 2003-2008.	5.2	9
293	Bulk-Type All-Solid-State Lithium Secondary Battery with Li2S-P2S5 Thin-Film Separator. Electrochemistry, 2012, 80, 839-841.	1.4	9
294	Reaction uniformity visualized by Raman imaging in the composite electrode layers of all-solid-state lithium batteries. Physical Chemistry Chemical Physics, 2020, 22, 13271-13276.	2.8	9
295	Liquid-phase synthesis of Li3PS4 solid electrolyte using ethylenediamine. Journal of Sol-Gel Science and Technology, 2022, 101, 2-7.	2.4	9
296	Preparation and characterization of hexagonal Li4GeO4-based glass-ceramic electrolytes. Solid State lonics, 2021, 363, 115605.	2.7	9
297	Crystallization behaviors in superionic conductor Na3PS4. Journal of Power Sources, 2021, 511, 230444.	7.8	9
298	Glasses and Glass-Ceramics for Solid-State Battery Applications. Springer Handbooks, 2019, , 1697-1754.	0.6	9
299	Thio-oxynitride phosphate glass electrolytes prepared by mechanical milling. Journal of Materials Research, 2015, 30, 2940-2948.	2.6	8
300	Liquid-phase step-by-step growth of an iron cyanide coordination framework on LiCoO ₂ particle surfaces. Dalton Transactions, 2015, 44, 15279-15285.	3.3	8
301	Sodium thiophosphate electrolyte thin films prepared by pulsed laser deposition for bulk-type all-solid-state sodium rechargeable batteries. Journal of the Ceramic Society of Japan, 2018, 126, 475-481.	1.1	8
302	Na2S–Nal solid solution as positive electrode in all-solid-state Na/S batteries. Journal of Power Sources, 2022, 532, 231313.	7.8	8
303	Electronic states calculated by the DV-Xα cluster method for lithium ion conductive Li2S–SiS2–Li4SiO4 oxysulfide glasses. Journal of Non-Crystalline Solids, 2001, 288, 1-7.	3.1	7
304	Preparation and Characterization of Lithium Ion Conducting Glass–Polymer Composites. Chemistry Letters, 2001, 30, 814-815.	1.3	7
305	All-solid-state rechargeable lithium batteries using SnX-P2X5 ($X = S$ and O) amorphous negative electrodes. Research on Chemical Intermediates, 2006, 32, 497-506.	2.7	7
306	Structure of Polyphenylsilsesquioxane Particles Prepared by Two-Step Acid-Base Catalyzed Sol–Gel Process and Formation of Hollow Particles. Journal of Nanoscience and Nanotechnology, 2007, 7, 3307-3312.	0.9	7

#	Article	IF	Citations
307	Proton-Conductive Inorganic–Organic Hybrid Membrane Prepared from 3-(2-Aminoethylaminopropyl)triethoxysilane and Sulfuric Acid by the Sol-Gel Method. Journal of the Electrochemical Society, 2009, 156, B174.	2.9	7
308	Characterization of Solid Electrolytes Prepared from Li[sub 2]S–P[sub 2]S[sub 5] Glass and Ionic Liquids. Journal of the Electrochemical Society, 2010, 157, A1296.	2.9	7
309	Preparation and characterization of Na ₃ 8O ₄ glass electrolytes with Na ⁺ ion conductivity prepared by a mechanical milling technique. Journal of Asian Ceramic Societies, 2016, 4, 6-10.	2.3	7
310	Amorphous TiS ₃ /S/C Composite Positive Electrodes with High Capacity for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2016, 163, A1730-A1735.	2.9	7
311	Microstructure and conductivity of Al-substituted Li7La3Zr2O12 ceramics with different grain sizes. Solid State Ionics, 2019, 342, 115047.	2.7	7
312	Amorphous Na ₂ TiS ₃ as an Active Material for All-solid-state Sodium Batteries. Chemistry Letters, 2019, 48, 288-290.	1.3	7
313	Sulfide Electrolyte Suppressing Side Reactions in Composite Positive Electrodes for All-Solid-State Lithium Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 29228-29234.	8.0	7
314	Structures and conductivities of stable and metastable Li ₅ GaS ₄ solid electrolytes. RSC Advances, 2021, 11, 25211-25216.	3.6	7
315	Molybdenum polysulfide electrode with high capacity for all-solid-state sodium battery. Solid State lonics, 2022, 376, 115848.	2.7	7
316	Micropatterning of Transparent Poly(Benzylsilsesquioxane) Thick Films Prepared by the Electrophoretic Sol?Gel Deposition Process Using a Hydrophobic?Hydrophilic-Patterned Surface. Journal of the American Ceramic Society, 2006, 89, 3832-3835.	3.8	6
317	Glass transition and thermal softening of poly(phenylsilsesquioxane) particles prepared using two-step acid–base catalyzed sol–gel process. Journal of Non-Crystalline Solids, 2008, 354, 700-704.	3.1	6
318	Electrochemical performance of all-solid-state lithium secondary batteries using Li4Ti5O12 electrode and Li2S–P2S5 solid electrolytes. Journal of Materials Research, 2010, 25, 1548-1553.	2.6	6
319	Characterization of hybrid electrolytes prepared from the Li2S–P2S5 glasses and alkanediols. Solid State Ionics, 2011, 192, 130-133.	2.7	6
320	Fast Cationic and Anionic Redox Reactions in Li ₂ RuO ₃ -Li _{SO₄ Positive Electrode Materials. ACS Applied Energy Materials, 2019, 2, 1594-1599.}	5.1	6
321	Sulfurâ€Based Composite Electrode with Interconnected Mesoporous Carbon for Allâ€Solidâ€State Lithium–Sulfur Batteries. Energy Technology, 2019, 7, 1980393.	3.8	6
322	Characterizing the Structural Change of Na ₃ PS ₄ Solid Electrolytes in a Humid N ₂ Atmosphere. Journal of Physical Chemistry C, 2022, 126, 7383-7389.	3.1	6
323	Room-Temperature Preparation of All-Solid-State Lithium Batteries Using TiO ₂ Anodes and Oxide Electrolytes. Journal of Physical Chemistry C, 2022, 126, 10320-10326.	3.1	6
324	Preparation of Li6Si2S7-Li6B4X9 (X = S, O) glasses by rapid quenching and their lithium ion conductivities. Solid State Ionics, 1996, 86-88, 539-542.	2.7	5

#	Article	IF	CITATIONS
325	Cycle Performance of All-solid-state In/LiCoO ₂ Batteries with Li ₂ S-P ₂ S(sub>5 Glass-ceramic Electrolytes. Electrochemistry, 2003, 71, 1196-1200.	1.4	5
326	Preparation and Characterization of Polyaminophenylsilsesquioxane Particles by Two-step Acid–Base-catalyzed Sol–Gel Process. Chemistry Letters, 2007, 36, 324-325.	1.3	5
327	Fabrication of convex-shaped polybenzylsilsesquioxane micropatterns by the electrophoretic sol–gel deposition process using indium tin oxide substrates with a hydrophobic-hydrophilic-patterned surface. Journal of Sol-Gel Science and Technology, 2007, 43, 85-91.	2.4	5
328	Synthesis of monodispersed lithium silicate particles using the sol–gel method. Journal of Sol-Gel Science and Technology, 2013, 65, 41-45.	2.4	5
329	Chalcogenide glasses as electrolytes for batteries. , 2014, , 632-654.		5
330	Mechanochemical synthesis of cubic rocksalt Na ₂ TiS ₃ as novel active materials for all-solid-state sodium secondary batteries. Journal of the Ceramic Society of Japan, 2019, 127, 514-517.	1.1	5
331	Fabrication of Mg-Al Layered Double Hydroxide Thin Membrane for All-Solid-State Alkaline Fuel Cell Using Glass Paper as a Support. Frontiers in Materials, 2020, 7, .	2.4	5
332	Sodium-Ion Conducting Solid Electrolytes in the Na ₂ 3 System. Electrochemistry, 2022, 90, 067009-067009.	1.4	5
333	Chemical Bonding of Li lons in Li ₇ P ₃ S ₁₁ Crystal. Journal of the Physical Society of Japan, 2010, 79, 65-68.	1.6	4
334	Thin Film Electrode Materials Li4Ti5O12and LiCoO2Prepared by Spray Pyrolysis Method. IOP Conference Series: Materials Science and Engineering, 2011, 18, 122004.	0.6	4
335	Solution-based sequential modification of LiCoO ₂ particle surfaces with iron(<scp>ii</scp>) oxalate nanolayers. CrystEngComm, 2017, 19, 4175-4181.	2.6	4
336	High-Rate Lithium Metal Plating and Stripping on Solid Electrolytes Using a Porous Current Collector with a High Aperture Ratio. ACS Applied Energy Materials, 2021, 4, 12613-12622.	5.1	4
337	Mechanochemically Prepared Highly Conductive Na _{2.88} Sb _{0.88} W _{0.12} S _{4Composite Electrolytes for All-Solid-State Sodium Battery. Electrochemistry, 2022, 90, 047005-047005.})& igt; -Nal	4
338	Kinetics of Interfacial Lithium-ion Transfer between a Graphite Negative Electrode and a Li ₂ S-P ₂ 5 Glassy Solid Electrolyte. Electrochemistry, 2022, 90, 037003-037003.	1.4	3
339	Preparation and characterization of Na _{2.88} Sb _{4â^'} 0.12S _{4â^'<td>:ub><</td><td>:;i><su< td=""></su<></td>}	:ub><	:;i> <su< td=""></su<>
340	DEVELOPMENT OF LITHIUM ION CONDUCTING OXYSULFIDE GLASSES., 2000,,.		2
341	SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS Electrolytes: Glass. , 2009, , 138-144.		2
342	Preparation of needle-like .ALPHAFe2O3 particles and influences of their morphology on the electrochemical behavior in all-solid-state lithium batteries. Journal of the Ceramic Society of Japan, 2010, 118, 326-328.	1.1	2

#	Article	IF	CITATIONS
343	Substituent effects on the glass transition phenomena of polyorganosilsesquioxane particles prepared by two-step acid-base catalyzed sol-gel process. Journal of the Ceramic Society of Japan, 2011, 119, 173-179.	1.1	2
344	Soft mechanochemical synthesis and electrochemical behavior of LiVMoO6 for all-solid-state lithium batteries. Journal of Materials Science, 2016, 51, 3574-3584.	3.7	2
345	Preparation of an Amorphous 80LiCoO ₂ ·20Li ₂ SO ₄ Thin Film Electrode by Pulsed Laser Deposition. Electrochemistry, 2018, 86, 246-249.	1.4	2
346	Preparation and characterization of composite quasi-solid electrolytes composed of 75Li2S·25P2S5 glass and phosphate esters. Journal of Power Sources, 2020, 479, 228826.	7.8	2
347	Solid electrolytes Na ₁₀₊ <i>_x</i> >Sn ₁₊ <i>_x</i> >P _{2â^²} <i>_xx prepared via a mechanochemical process. Journal of the Ceramic Society of Japan, 2021, 129, 323-328.</i>	b v.1 /i>S <s< td=""><td>sub>12</td></s<>	sub>12
348	Glassy oxide electrolytes in the system Li ₄ –Li ₂ SO ₄ with excellent formability. Journal of the Ceramic Society of Japan, 2021, 129, 458-463.	1.1	2
349	Mechanochemical synthesis of amorphous MoS <i>_x</i> (<i>x</i> = 3, 4, 5, 6, and 7) electrode for all-solid-state sodium battery. Journal of the Ceramic Society of Japan, 2022, 130, 308-312.	1.1	2
350	Lithium-ion conductivity and crystallization temperature of multicomponent oxide glass electrolytes. Journal of Non-Crystalline Solids: X, 2022, 14, 100089.	1.2	2
351	Crystalline precursor derived from Li3PS4 and ethylenediamine for ionic conductors. Journal of Sol-Gel Science and Technology, 2022, 104, 627-634.	2.4	2
352	Amorphous Positive Electrode Materials Prepared Using LiMn _{1.5} Ni _{0.5} O ₄ and Lithium Oxyacid Salts. Chemistry Letters, 2022, 51, 815-818.	1.3	2
353	Cathode Properties of Amorphous 66.7V ₂ O ₅ • 33.3FeOOH Powders Obtained by Mechanical Milling Technique. Electrochemistry, 2003, 71, 1036-1038.	1.4	1
354	Development of Glass-Based Solid Electrolytes for Lithium-Ion Batteries. Nanostructure Science and Technology, 2014, , 63-80.	0.1	1
355	Electronic state of sulfide-based alkali-ion conducting solid-state electrolytes applied to all-solid-state secondary batteries. IOP Conference Series: Materials Science and Engineering, 2020, 835, 012041.	0.6	1
356	Hydroxide ion Conduction Mechanism in Mg-Al CO32â^ Layered Double Hydroxide. Journal of Electrochemical Science and Technology, 2021, 12, 230-236.	2.2	1
357	Development of All-solid-state Batteries. Journal of the Institute of Electrical Engineers of Japan, 2021, 141, 579-582.	0.0	1
358	Synthesis of Sulfide-Based Solid Electrolytes and Construction of the Interfaces in Bulk-Type All-Solid-State Batteries Using Liquid-Phase Techniques. Journal of the Japan Society of Colour Material, 2016, 89, 300-305.	0.1	1
359	Quasi-Solid Electrolytes Comprising Sulfide Electrolyte and Carboxylate Esters: Investigation of the Influence of the Carboxylate Ester Structure. Journal of the Electrochemical Society, 2020, 167, 120521.	2.9	1

Mechanochemical Synthesis of Pyrite Ni<sub>1â^'</sub><i></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>< 360

#	Article	IF	CITATIONS
361	All Solid-State Lithium Secondary Batteries Using High Lithium Ion Conducting Li2Sâ€"P2S5 Glass-Ceramics ChemInform, 2003, 34, no.	0.0	О
362	B22-P-14Observation of Li2S-P2S5crystalline glass by transmission electron microscopy. Microscopy (Oxford, England), 2015, 64, i109.2-i109.	1.5	0
363	Lithium–Sulfur Battery Electrolytes. , 2017, , 149-194.		O
364	Preparation of Solid Electrolyte Particles and Solid-Solid Interfaces for All-Solid-State Batteries., 2018,,579-584.		0
365	Ion-exchange Synthesis of Li ₂ NaPS ₄ from Na ₃ PS ₄ . Chemistry Letters, 2019, 48, 863-865.	1.3	O
366	Li Negative Electrode. , 2021, , 137-142.		0
367	Sulfur and Sulfide Positive Electrode. , 2021, , 125-135.		0
368	Glass Electrolyte., 2021,, 61-66.		0
369	Microstructure and Charge-discharge Properties of a Li3CuS2 active material for All-Solid-State Batteries. Microscopy and Microanalysis, 2021, 27, 3424-3425.	0.4	0
370	Development, Structure, and Mechanical Properties of Sulfide Solid Electrolytes., 2021,, 38-48.		0
371	Glass Ion Conductors for Solid-State Lithium Batteries. , 2014, , 946-950.		O
372	Title is missing!. Electrochemistry, 2017, 85, 347-351.	1.4	0
373	Title is missing!. Electrochemistry, 2017, 85, 586-590.	1.4	O
374	Development of Solid Electrolytes for All-Solid-State Batteries. Nippon Gomu Kyokaishi, 2019, 92, 430-434.	0.0	0
375	Development of Next Generation Battery Materials by Mechanochemical Process. Journal of the Society of Powder Technology, Japan, 2019, 56, 452-458.	0.1	0
376	Characterization of quasi-solid electrolytes based on Li ₃ PS ₄ glass with organic carbonate additives. Journal of the Ceramic Society of Japan, 2020, 128, 653-655.	1.1	0