Ravichandran Ramasamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2156459/publications.pdf

Version: 2024-02-01

57 papers 4,460 citations

201674 27 h-index 53 g-index

58 all docs

58 docs citations

58 times ranked 6105 citing authors

#	Article	IF	CITATIONS
1	The RAGE/DIAPH1 Signaling Axis & Diabetic Complications for the Pathogenesis of Diabetic Complications. International Journal of Molecular Sciences, 2022, 23, 4579.	4.1	12
2	Inflammation Meets Metabolism Roles: for the Receptor for Advanced Glycation End Products Axis in Cardiovascular Disease. Immunometabolism, 2021, 3, .	1.6	12
3	Heme & RAGE: A new opportunistic relationship?. FEBS Journal, 2021, 288, 3424-3427.	4.7	3
4	Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications. Frontiers in Endocrinology, 2021, 12, 636267.	3 . 5	47
5	Diabetes and Cardiovascular Complications: The Epidemics Continue. Current Cardiology Reports, 2021, 23, 74.	2.9	6
6	Macrophage-adipocyte communication and cardiac remodeling. Journal of Experimental Medicine, 2021, 218, .	8.5	3
7	Small-molecule antagonism of the interaction of the RAGE cytoplasmic domain with DIAPH1 reduces diabetic complications in mice. Science Translational Medicine, 2021, 13, eabf7084.	12.4	28
8	Advanced Glycation End Products: Building on the Concept of the "Common Soil―in Metabolic Disease. Endocrinology, 2020, 161, .	2.8	104
9	An Eclectic Cast of Cellular Actors Orchestrates Innate Immune Responses in the Mechanisms Driving Obesity and Metabolic Perturbation. Circulation Research, 2020, 126, 1565-1589.	4.5	13
10	Receptor for Advanced Glycation End Products (RAGE) and Mechanisms and Therapeutic Opportunities in Diabetes and Cardiovascular Disease: Insights From Human Subjects and Animal Models. Frontiers in Cardiovascular Medicine, 2020, 7, 37.	2.4	134
11	RAGE impairs murine diabetic atherosclerosis regression and implicates IRF7 in macrophage inflammation and cholesterol metabolism. JCI Insight, 2020, 5, .	5.0	38
12	Incense Burning is Associated with Human Oral Microbiota Composition. Scientific Reports, 2019, 9, 10039.	3.3	12
13	A Receptor of the Immunoglobulin Superfamily Regulates Adaptive Thermogenesis. Cell Reports, 2019, 28, 773-791.e7.	6.4	35
14	Metabolism, Obesity, and Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e166-e174.	2.4	15
15	Preclinical and Clinical Proof of Concept for Metabolic Intervention in Diabetic Cardiomyopathy. Journal of Cardiac Failure, 2019, 25, S77.	1.7	1
16	Significance and Mechanistic Relevance of SIRT6-Mediated Endothelial Dysfunction in Cardiovascular Disease Progression. Circulation Research, 2019, 124, 1408-1410.	4.5	16
17	Metabolic dysfunction in Emirati subjects in Abu Dhabi: Relationship to levels of soluble RAGEs. Journal of Clinical and Translational Endocrinology, 2019, 16, 100192.	1.4	2
18	The Receptor for Advanced Glycation End Products (RAGE) and DIAPH1: Implications for vascular and neuroinflammatory dysfunction in disorders of the central nervous system. Neurochemistry International, 2019, 126, 154-164.	3.8	44

#	Article	IF	CITATIONS
19	The receptor for advanced glycation end products (RAGE) and DIAPH1: unique mechanisms and healing the wounded vascular system. Expert Review of Proteomics, 2019, 16, 471-474.	3.0	6
20	Netrin-1 Alters Adipose Tissue Macrophage Fate and Function in Obesity. Immunometabolism, 2019, 1, .	1.6	41
21	Types of tobacco consumption and the oral microbiome in the United Arab Emirates Healthy Future (UAEHFS) Pilot Study. Scientific Reports, 2018, 8, 11327.	3.3	51
22	The UAE healthy future study: a pilot for a prospective cohort study of 20,000 United Arab Emirates nationals. BMC Public Health, 2018, 18, 101.	2.9	32
23	Deletion of the formin <i>Diaph1</i> protects from structural and functional abnormalities in the murine diabetic kidney. American Journal of Physiology - Renal Physiology, 2018, 315, F1601-F1612.	2.7	18
24	Human Aldose Reductase Expression Prevents Atherosclerosis Regression in Diabetic Mice. Diabetes, 2018, 67, 1880-1891.	0.6	18
25	Patterns of tobacco use in the United Arab Emirates Healthy Future (UAEHFS) pilot study. PLoS ONE, 2018, 13, e0198119.	2.5	32
26	Training scientists as future industry leaders: teaching translational science from an industry executive's perspective. Journal of Translational Science, 2018, 4, .	0.2	1
27	Targeted drug discovery and development, from molecular signaling to the global market: an educational program at New York University, 5-year metrics. Journal of Translational Science, 2018, 4, 1-9.	0.2	21
28	Small Molecule Antagonists of RAGEâ€DIAPH1: Novel Therapeutic Opportunities in Metabolic and Chronic Disease. FASEB Journal, 2018, 32, 603.4.	0.5	O
29	Glycation & Camp; the RAGE axis: targeting signal transduction through DIAPH1. Expert Review of Proteomics, 2017, 14, 147-156.	3.0	25
30	The Formin, DIAPH1, is a Key Modulator of Myocardial Ischemia/Reperfusion Injury. EBioMedicine, 2017, 26, 165-174.	6.1	25
31	Aldose reductase modulates acute activation of mesenchymal markers via the \hat{l}^2 -catenin pathway during cardiac ischemia-reperfusion. PLoS ONE, 2017, 12, e0188981.	2.5	3
32	Small Molecule Inhibition of Ligand-Stimulated RAGE-DIAPH1 Signal Transduction. Scientific Reports, 2016, 6, 22450.	3.3	79
33	Aldose Reductase Acts as a Selective Derepressor of PPAR \hat{I}^3 and the Retinoic Acid Receptor. Cell Reports, 2016, 15, 181-196.	6.4	23
34	Cellular mechanisms and consequences of glycation in atherosclerosis and obesity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2244-2252.	3.8	56
35	Mechanisms of transcription factor acetylation and consequences in hearts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2221-2231.	3.8	28
36	Cardiovascular K _{ATP} channels and advanced aging. Pathobiology of Aging & Age Related Diseases, 2016, 6, 32517.	1.1	9

#	Article	IF	CITATIONS
37	The multiple faces of RAGE – opportunities for therapeutic intervention in aging and chronic disease. Expert Opinion on Therapeutic Targets, 2016, 20, 431-446.	3.4	83
38	Acute Administration of n-3 Rich Triglyceride Emulsions Provides Cardioprotection in Murine Models after Ischemia-Reperfusion. PLoS ONE, 2015, 10, e0116274.	2.5	17
39	Glutaminolysis and Transferrin Regulate Ferroptosis. Molecular Cell, 2015, 59, 298-308.	9.7	1,252
40	RAGE Suppresses ABCG1-Mediated Macrophage Cholesterol Efflux in Diabetes. Diabetes, 2015, 64, 4046-4060.	0.6	54
41	Deletion of mDia1 is Protective Against Renal Damage in a Murine Model of Diabetes. FASEB Journal, 2015, 29, LB763.	0.5	O
42	Unlocking the biology of RAGE in diabetic microvascular complications. Trends in Endocrinology and Metabolism, 2014, 25, 15-22.	7.1	164
43	RAGE Regulates the Metabolic and Inflammatory Response to High-Fat Feeding in Mice. Diabetes, 2014, 63, 1948-1965.	0.6	168
44	Acute Administration of nâ€3 Triglyceride Emulsion Provides Marked Cardioprotection After Ischemia/Reperfusion. FASEB Journal, 2013, 27, 359.6.	0.5	0
45	Aldose reductase modulates cardiac glycogen synthase kinase-3β phosphorylation during ischemia-reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H297-H308.	3.2	18
46	Formin mDia1 Mediates Vascular Remodeling via Integration of Oxidative and Signal Transduction Pathways. Circulation Research, 2012, 110, 1279-1293.	4.5	78
47	Lysophosphatidic acid targets vascular and oncogenic pathways via RAGE signaling. Journal of Experimental Medicine, 2012, 209, 2339-2350.	8.5	95
48	The diverse ligand repertoire of the receptor for advanced glycation endproducts and pathways to the complications of diabetes. Vascular Pharmacology, 2012, 57, 160-167.	2.1	134
49	Receptor for Advanced Glycation End Products (RAGE) and Implications for the Pathophysiology of Heart Failure. Current Heart Failure Reports, 2012, 9, 107-116.	3.3	66
50	Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Annals of the New York Academy of Sciences, 2011, 1243, 88-102.	3.8	387
51	Deletion of the Receptor for Advanced Glycation End Products Reduces Glomerulosclerosis and Preserves Renal Function in the Diabetic OVE26 Mouse. Diabetes, 2010, 59, 2043-2054.	0.6	151
52	Aldose reductase mediates myocardial ischemia-reperfusion injury in part by opening mitochondrial permeability transition pore. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H333-H341.	3.2	43
53	RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1823-H1832.	3.2	121
54	RAGE and Modulation of Ischemic Injury in the Diabetic Myocardium. Diabetes, 2008, 57, 1941-1951.	0.6	100

#	Article	IF	CITATIONS
55	Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE–/– mice. Journal of Clinical Investigation, 2008, 118, 183-194.	8.2	325
56	Receptor for Advanced-Glycation End Products. Circulation, 2006, 113, 1226-1234.	1.6	203
57	Glycation and a Spark of ALEs (Advanced Lipoxidation End Products) – Igniting RAGE/Diaphanous-1 and Cardiometabolic Disease. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	8