
Ravichandran Ramasamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2156459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glutaminolysis and Transferrin Regulate Ferroptosis. Molecular Cell, 2015, 59, 298-308.	9.7	1,252
2	Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Annals of the New York Academy of Sciences, 2011, 1243, 88-102.	3.8	387
3	Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE–/– mice. Journal of Clinical Investigation, 2008, 118, 183-194.	8.2	325
4	Receptor for Advanced-Glycation End Products. Circulation, 2006, 113, 1226-1234.	1.6	203
5	RAGE Regulates the Metabolic and Inflammatory Response to High-Fat Feeding in Mice. Diabetes, 2014, 63, 1948-1965.	0.6	168
6	Unlocking the biology of RAGE in diabetic microvascular complications. Trends in Endocrinology and Metabolism, 2014, 25, 15-22.	7.1	164
7	Deletion of the Receptor for Advanced Glycation End Products Reduces Glomerulosclerosis and Preserves Renal Function in the Diabetic OVE26 Mouse. Diabetes, 2010, 59, 2043-2054.	0.6	151
8	The diverse ligand repertoire of the receptor for advanced glycation endproducts and pathways to the complications of diabetes. Vascular Pharmacology, 2012, 57, 160-167.	2.1	134
9	Receptor for Advanced Glycation End Products (RAGE) and Mechanisms and Therapeutic Opportunities in Diabetes and Cardiovascular Disease: Insights From Human Subjects and Animal Models. Frontiers in Cardiovascular Medicine, 2020, 7, 37.	2.4	134
10	RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1823-H1832.	3.2	121
11	Advanced Glycation End Products: Building on the Concept of the "Common Soil―in Metabolic Disease. Endocrinology, 2020, 161, .	2.8	104
12	RAGE and Modulation of Ischemic Injury in the Diabetic Myocardium. Diabetes, 2008, 57, 1941-1951.	0.6	100
13	Lysophosphatidic acid targets vascular and oncogenic pathways via RAGE signaling. Journal of Experimental Medicine, 2012, 209, 2339-2350.	8.5	95
14	The multiple faces of RAGE – opportunities for therapeutic intervention in aging and chronic disease. Expert Opinion on Therapeutic Targets, 2016, 20, 431-446.	3.4	83
15	Small Molecule Inhibition of Ligand-Stimulated RAGE-DIAPH1 Signal Transduction. Scientific Reports, 2016, 6, 22450.	3.3	79
16	Formin mDia1 Mediates Vascular Remodeling via Integration of Oxidative and Signal Transduction Pathways. Circulation Research, 2012, 110, 1279-1293.	4.5	78
17	Receptor for Advanced Glycation End Products (RAGE) and Implications for the Pathophysiology of Heart Failure. Current Heart Failure Reports, 2012, 9, 107-116.	3.3	66
18	Cellular mechanisms and consequences of glycation in atherosclerosis and obesity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2244-2252.	3.8	56

#	Article	IF	CITATIONS
19	RAGE Suppresses ABCG1-Mediated Macrophage Cholesterol Efflux in Diabetes. Diabetes, 2015, 64, 4046-4060.	0.6	54
20	Types of tobacco consumption and the oral microbiome in the United Arab Emirates Healthy Future (UAEHFS) Pilot Study. Scientific Reports, 2018, 8, 11327.	3.3	51
21	Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications. Frontiers in Endocrinology, 2021, 12, 636267.	3.5	47
22	The Receptor for Advanced Glycation End Products (RAGE) and DIAPH1: Implications for vascular and neuroinflammatory dysfunction in disorders of the central nervous system. Neurochemistry International, 2019, 126, 154-164.	3.8	44
23	Aldose reductase mediates myocardial ischemia-reperfusion injury in part by opening mitochondrial permeability transition pore. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H333-H341.	3.2	43
24	Netrin-1 Alters Adipose Tissue Macrophage Fate and Function in Obesity. Immunometabolism, 2019, 1, .	1.6	41
25	RAGE impairs murine diabetic atherosclerosis regression and implicates IRF7 in macrophage inflammation and cholesterol metabolism. JCI Insight, 2020, 5, .	5.0	38
26	A Receptor of the Immunoglobulin Superfamily Regulates Adaptive Thermogenesis. Cell Reports, 2019, 28, 773-791.e7.	6.4	35
27	The UAE healthy future study: a pilot for a prospective cohort study of 20,000 United Arab Emirates nationals. BMC Public Health, 2018, 18, 101.	2.9	32
28	Patterns of tobacco use in the United Arab Emirates Healthy Future (UAEHFS) pilot study. PLoS ONE, 2018, 13, e0198119.	2.5	32
29	Mechanisms of transcription factor acetylation and consequences in hearts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2221-2231.	3.8	28
30	Small-molecule antagonism of the interaction of the RAGE cytoplasmic domain with DIAPH1 reduces diabetic complications in mice. Science Translational Medicine, 2021, 13, eabf7084.	12.4	28
31	Glycation & the RAGE axis: targeting signal transduction through DIAPH1. Expert Review of Proteomics, 2017, 14, 147-156.	3.0	25
32	The Formin, DIAPH1, is a Key Modulator of Myocardial Ischemia/Reperfusion Injury. EBioMedicine, 2017, 26, 165-174.	6.1	25
33	Aldose Reductase Acts as a Selective Derepressor of PPARÎ ³ and the Retinoic Acid Receptor. Cell Reports, 2016, 15, 181-196.	6.4	23
34	Targeted drug discovery and development, from molecular signaling to the global market: an educational program at New York University, 5-year metrics. Journal of Translational Science, 2018, 4, 1-9.	0.2	21
35	Aldose reductase modulates cardiac glycogen synthase kinase-3β phosphorylation during ischemia-reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H297-H308.	3.2	18
36	Deletion of the formin <i>Diaph1</i> protects from structural and functional abnormalities in the murine diabetic kidney. American Journal of Physiology - Renal Physiology, 2018, 315, F1601-F1612.	2.7	18

#	Article	IF	CITATIONS
37	Human Aldose Reductase Expression Prevents Atherosclerosis Regression in Diabetic Mice. Diabetes, 2018, 67, 1880-1891.	0.6	18
38	Acute Administration of n-3 Rich Triglyceride Emulsions Provides Cardioprotection in Murine Models after Ischemia-Reperfusion. PLoS ONÉ, 2015, 10, e0116274.	2.5	17
39	Significance and Mechanistic Relevance of SIRT6-Mediated Endothelial Dysfunction in Cardiovascular Disease Progression. Circulation Research, 2019, 124, 1408-1410.	4.5	16
40	Metabolism, Obesity, and Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e166-e174.	2.4	15
41	An Eclectic Cast of Cellular Actors Orchestrates Innate Immune Responses in the Mechanisms Driving Obesity and Metabolic Perturbation. Circulation Research, 2020, 126, 1565-1589.	4.5	13
42	Incense Burning is Associated with Human Oral Microbiota Composition. Scientific Reports, 2019, 9, 10039.	3.3	12
43	Inflammation Meets Metabolism Roles: for the Receptor for Advanced Glycation End Products Axis in Cardiovascular Disease. Immunometabolism, 2021, 3, .	1.6	12
44	The RAGE/DIAPH1 Signaling Axis & Implications for the Pathogenesis of Diabetic Complications. International Journal of Molecular Sciences, 2022, 23, 4579.	4.1	12
45	Cardiovascular K _{ATP} channels and advanced aging. Pathobiology of Aging & Age Related Diseases, 2016, 6, 32517.	1.1	9
46	Glycation and a Spark of ALEs (Advanced Lipoxidation End Products) – Igniting RAGE/Diaphanous-1 and Cardiometabolic Disease. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	8
47	The receptor for advanced glycation end products (RAGE) and DIAPH1: unique mechanisms and healing the wounded vascular system. Expert Review of Proteomics, 2019, 16, 471-474.	3.0	6
48	Diabetes and Cardiovascular Complications: The Epidemics Continue. Current Cardiology Reports, 2021, 23, 74.	2.9	6
49	Aldose reductase modulates acute activation of mesenchymal markers via the β-catenin pathway during cardiac ischemia-reperfusion. PLoS ONE, 2017, 12, e0188981.	2.5	3
50	Heme & RAGE: A new opportunistic relationship?. FEBS Journal, 2021, 288, 3424-3427.	4.7	3
51	Macrophage-adipocyte communication and cardiac remodeling. Journal of Experimental Medicine, 2021, 218, .	8.5	3
52	Metabolic dysfunction in Emirati subjects in Abu Dhabi: Relationship to levels of soluble RAGEs. Journal of Clinical and Translational Endocrinology, 2019, 16, 100192.	1.4	2
53	Preclinical and Clinical Proof of Concept for Metabolic Intervention in Diabetic Cardiomyopathy. Journal of Cardiac Failure, 2019, 25, S77.	1.7	1
54	Training scientists as future industry leaders: teaching translational science from an industry executive's perspective. Journal of Translational Science, 2018, 4, .	0.2	1

#	Article	IF	CITATIONS
55	Acute Administration of nâ€3 Triglyceride Emulsion Provides Marked Cardioprotection After Ischemia/Reperfusion. FASEB Journal, 2013, 27, 359.6.	0.5	0
56	Deletion of mDia1 is Protective Against Renal Damage in a Murine Model of Diabetes. FASEB Journal, 2015, 29, LB763.	0.5	0
57	Small Molecule Antagonists of RAGEâ€DIAPH1: Novel Therapeutic Opportunities in Metabolic and Chronic Disease. FASEB Journal, 2018, 32, 603.4.	0.5	Ο