
Daniel C Marcus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2155972/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	P2RX2 and P2RX4 receptors mediate cation absorption in transitional cells and supporting cells of the utricular macula. Hearing Research, 2020, 386, 107860.	2.0	5
2	Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Scientific Reports, 2020, 10, 12598.	3.3	509
3	Cerebellar Ataxia Caused by Type II Unipolar Brush Cell Dysfunction in the Asic5 Knockout Mouse. Scientific Reports, 2020, 10, 2168.	3.3	9
4	Ion Transport Across Inner Ear Epithelia. Physiology in Health and Disease, 2020, , 279-305.	0.3	0
5	Claudin expression during early postnatal development of the murine cochlea. BMC Physiology, 2018, 18, 1.	3.6	5
6	Ion and Fluid Homeostasis in the Cochlea. Springer Handbook of Auditory Research, 2017, , 253-286.	0.7	7
7	The gastric H,K-ATPase in stria vascularis contributes to pH regulation of cochlear endolymph but not to K secretion. BMC Physiology, 2017, 17, 1.	3.6	10
8	Slc26a7 Chloride Channel Activity and Localization in Mouse Reissner's Membrane Epithelium. PLoS ONE, 2014, 9, e97191.	2.5	20
9	cAMP-stimulated Cl- secretion is increased by glucocorticoids and inhibited by bumetanide in semicircular canal duct epithelium. BMC Physiology, 2013, 13, 6.	3.6	14
10	SLC26A4 Targeted to the Endolymphatic Sac Rescues Hearing and Balance in Slc26a4 Mutant Mice. PLoS Genetics, 2013, 9, e1003641.	3.5	57
11	Endolymphatic Na+ and K+ Concentrations during Cochlear Growth and Enlargement in Mice Lacking Slc26a4/pendrin. PLoS ONE, 2013, 8, e65977.	2.5	15
12	Targeted expression of SLC26A4 rescues hearing and balance in Slc26a4 Δ/Δ mice. FASEB Journal, 2013, 27, 736.3.	0.5	0
13	Na+absorption by Claudius' cells is regulated by purinergic signaling in the cochlea. Acta Oto-Laryngologica, 2012, 132, S103-S108.	0.9	7
14	Acoustic Transduction. , 2012, , 649-668.		6
15	Regulation of sodium transport in the inner ear. Hearing Research, 2011, 280, 21-29.	2.0	54
16	Sodium selectivity of Reissner's membrane epithelial cells. BMC Physiology, 2011, 11, 4.	3.6	8
17	Sodium selectivity of semicircular canal duct epithelial cells. BMC Research Notes, 2011, 4, 355.	1.4	2
18	lon transport regulation by P2Y receptors, protein kinase C and phosphatidylinositol 3-kinase within the semicircular canal duct epithelium. BMC Research Notes, 2010, 3, 100.	1.4	6

#	Article	IF	CITATIONS
19	Expression of epithelial calcium transport system in rat cochlea and vestibular labyrinth. BMC Physiology, 2010, 10, 1.	3.6	68
20	Inner ear fluid homeostasis. , 2010, , .		5
21	Cochlear and Vestibular Function and Dysfunction. , 2010, , 425-437.		3
22	Inward-rectifier chloride currents in Reissner's membrane epithelial cells. Biochemical and Biophysical Research Communications, 2010, 394, 434-438.	2.1	8
23	Endolymphatic Sodium Homeostasis by Extramacular Epithelium of the Saccule. Journal of Neuroscience, 2009, 29, 15851-15858.	3.6	18
24	A Claudin-9–Based Ion Permeability Barrier Is Essential for Hearing. PLoS Genetics, 2009, 5, e1000610.	3.5	102
25	Developmental delays consistent with cochlear hypothyroidism contribute to failure to develop hearing in mice lacking <i>Slc26a4</i> /pendrin expression. American Journal of Physiology - Renal Physiology, 2009, 297, F1435-F1447.	2.7	64
26	Regulation of ENaC-mediated sodium transport by glucocorticoids in Reissner's membrane epithelium. American Journal of Physiology - Cell Physiology, 2009, 296, C544-C557.	4.6	63
27	Purinergic signaling in the inner ear. Hearing Research, 2008, 235, 1-7.	2.0	33
28	Regulation of ENaCâ€mediated sodium transport by glucocorticoids in Reissner's membrane epithelium. FASEB Journal, 2008, 22, 934.7.	0.5	0
29	Lack of pendrin HCO3â^' transport elevates vestibular endolymphatic [Ca2+] by inhibition of acid-sensitive TRPV5 and TRPV6 channels. American Journal of Physiology - Renal Physiology, 2007, 292, F1314-F1321.	2.7	119
30	Loss of cochlear HCO3â^' secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. American Journal of Physiology - Renal Physiology, 2007, 292, F1345-F1353.	2.7	221
31	EphB2 and ephrin-B2 regulate the ionic homeostasis of vestibular endolymph. Hearing Research, 2007, 223, 93-104.	2.0	35
32	Glucocorticoid regulation of genes in the amiloride-sensitive sodium transport pathway by semicircular canal duct epithelium of neonatal rat. Physiological Genomics, 2006, 24, 114-123.	2.3	56
33	Microarray Analysis of Ion Transportâ€Related Genes in Reissner's Membrane. FASEB Journal, 2006, 20, A345.	0.5	0
34	Epithelial calcium channel (TRPV5) regulates cochlear and vestibular calcium via vitamin Dâ€responsive pathway. FASEB Journal, 2006, 20, A800.	0.5	0
35	Apical membrane P2Y4 purinergic receptor controls K+ secretion by strial marginal cell epithelium. Cell Communication and Signaling, 2005, 3, 13.	6.5	20
36	Vitamin D upregulates expression of ECaC1 mRNA in semicircular canal. Biochemical and Biophysical Research Communications, 2005, 331, 1353-1357.	2.1	57

#	Article	IF	CITATIONS
37	Glucocorticoids stimulate cation absorption by semicircular canal duct epithelium via epithelial sodium channel. American Journal of Physiology - Renal Physiology, 2004, 286, F1127-F1135.	2.7	63
38	Deafness in Claudin 11-Null Mice Reveals the Critical Contribution of Basal Cell Tight Junctions to Stria Vascularis Function. Journal of Neuroscience, 2004, 24, 7051-7062.	3.6	225
39	Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Medicine, 2004, 2, 30.	5.5	241
40	Age-Related Changes in Cochlear Endolymphatic Potassium and Potential in CD-1 and CBA/CaJ Mice. JARO - Journal of the Association for Research in Otolaryngology, 2003, 4, 353-362.	1.8	53
41	Localization and Functional Studies of Pendrin in the Mouse Inner Ear Provide Insight About the Etiology of Deafness in Pendred Syndrome. JARO - Journal of the Association for Research in Otolaryngology, 2003, 4, 394-404.	1.8	130
42	Endolymphatic sodium homeostasis by REISSNER's membrane. Neuroscience, 2003, 119, 3-8.	2.3	44
43	Adenosine Stimulates Anion Secretion Across Cultured and Native Adult Human Vas Deferens Epithelia1. Biology of Reproduction, 2003, 68, 1027-1034.	2.7	32
44	KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. American Journal of Physiology - Cell Physiology, 2002, 282, C403-C407.	4.6	305
45	Nongenomic Effects of Corticosteroids on Ion Transport by Stria vascularis. Audiology and Neuro-Otology, 2002, 7, 100-106.	1.3	37
46	Chloride secretion by semicircular canal duct epithelium is stimulated via β ₂ -adrenergic receptors. American Journal of Physiology - Cell Physiology, 2002, 283, C1752-C1760.	4.6	37
47	Targeted Ablation of Connexin26 in the Inner Ear Epithelial Gap Junction Network Causes Hearing Impairment and Cell Death. Current Biology, 2002, 12, 1106-1111.	3.9	409
48	Immunolocalization of ClC-K chloride channel in strial marginal cells and vestibular dark cells. Hearing Research, 2001, 160, 1-9.	2.0	56
49	Estrogen acutely inhibits ion transport by isolated stria vascularis. Hearing Research, 2001, 158, 123-130.	2.0	57
50	Apical P2Y ₄ purinergic receptor controls K ⁺ secretion by vestibular dark cell epithelium. American Journal of Physiology - Cell Physiology, 2001, 281, C282-C289.	4.6	29
51	P2X2Receptor Mediates Stimulation of Parasensory Cation Absorption by Cochlear Outer Sulcus Cells and Vestibular Transitional Cells. Journal of Neuroscience, 2001, 21, 9168-9174.	3.6	87
52	Acoustic Transduction. , 2001, , 775-791.		4
53	K+ and Na+ absorption by outer sulcus epithelial cells. Hearing Research, 1999, 134, 48-56.	2.0	61
54	Protein kinase C mediates P2U purinergic receptor inhibition of K+ channel in apical membrane of strial marginal cells. Hearing Research, 1998, 115, 82-92.	2.0	59

#	Article	IF	CITATIONS
55	Divalent cations inhibit IsK/KvLQT1 channels in excised membrane patches of strial marginal cells. Hearing Research, 1998, 123, 157-167.	2.0	39
56	Ototoxic Effect of Erythromycin on Cochlear Potentials in the Guinea Pig. Annals of Otology, Rhinology and Laryngology, 1997, 106, 599-603.	1.1	11
57	cAMP increases K+ secretion via activation of apical IsK/KvLQT1 channels in strial marginal cells. Hearing Research, 1997, 114, 107-116.	2.0	46
58	P _{2U} purinergic receptor inhibits apical I _{sK} /KvLQT1 channel via protein kinase C in vestibular dark cells. American Journal of Physiology - Cell Physiology, 1997, 273, C2022-C2029.	4.6	60
59	I(sK) Channel in Strial Marginal Cells. Voltage-Dependence, Ion-Selectivity, Inhibition by 293B and Sensitivity to Clofilium. Auditory Neuroscience, 1997, 3, 215-230.	0.2	10
60	Inner Ear Defects Induced by Null Mutationof the isk Gene. Neuron, 1996, 17, 1251-1264.	8.1	380
61	Inhibitory Effect of Erythromycin on Ion Transport by Stria Vascularis and Vestibular Dark Cells. Acta Oto-Laryngologica, 1996, 116, 572-575.	0.9	16
62	Vibrating Probes: New Technology for Investigation of Endolymph Homeostasis Keio Journal of Medicine, 1996, 45, 301-305.	1.1	15
63	lon transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hearing Research, 1995, 84, 19-29.	2.0	238
64	Evidence for Purinergic Receptors in Vestibular Dark Cell and Strial Marginal Cell Epithelia of Gerbil. Auditory Neuroscience, 1995, 1, 331-340.	0.2	14
65	Transepithelial voltage and resistance of vestibular dark cell epithelium from the gerbil ampulla. Hearing Research, 1994, 73, 101-108.	2.0	57
66	Two types of chloride channel in the basolateral membrane of vestibular dark cells. Hearing Research, 1993, 69, 124-132.	2.0	38
67	The Na+/H+ exchanger in transitional cells of the inner ear. Hearing Research, 1993, 69, 107-114.	2.0	16
68	The membrane potential of vestibular dark cells is controlled by a large Clâ^' conductance. Hearing Research, 1992, 62, 149-156.	2.0	37
69	Ca2+-activated nonselective cation, maxi K+ and Clâ^' channels in apical membrane of marginal cells of stria vascularis. Hearing Research, 1992, 61, 86-96.	2.0	64
70	K+-induced swelling of vestibular dark cells is dependent on Na+ and Cl? and inhibited by piretanide. Pflugers Archiv European Journal of Physiology, 1990, 416, 262-269.	2.8	47
71	Transepithelial electrical responses to sodium and potassium of nonsensory region of gerbil utricle. Hearing Research, 1990, 44, 13-23.	2.0	14
72	Membrane potential measurements of transitional cells from the crista ampullaris of the Gerbil. Pflugers Archiv European Journal of Physiology, 1989, 414, 656-662.	2.8	26

#	Article	IF	CITATIONS
73	Dependence of endocochlear potential on vascular pH. Hearing Research, 1987, 31, 1-7.	2.0	11
74	Sidedness of action of loop diuretics and ouabain on nonsensory cells of utricle: A micro-Ussing chamber for inner ear tissues. Hearing Research, 1987, 30, 55-64.	2.0	57
75	Direct measurement of longitudinal endolymph flow rate in the guinea pig cochlea. Hearing Research, 1986, 23, 141-151.	2.0	76
76	Membrane transport parameters in frog corneal epithelium measured using impedance analysis techniques. Journal of Membrane Biology, 1986, 91, 213-225.	2.1	22
77	Effects of barium and ion substitutions in artificial blood on endocochlear potential. Hearing Research, 1985, 17, 79-86.	2.0	67
78	Transepithelial cation movements in gerbil utricles. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 1985, 6, 268-274.	1.3	8
79	Response of cochlear potentials to presumed alterations of ionic conductance: Endolymphatic perfusion of barium, valinomycin and nystatin. Hearing Research, 1983, 12, 17-30.	2.0	42
80	Comparison of the non-adrenergic action of phentolamine with that of vanadate on cochlear function. Hearing Research, 1982, 7, 233-246.	2.0	18
81	Changes in cation contents of stria vascularis with ouabain and potassium-free perfusion. Hearing Research, 1981, 4, 149-160.	2.0	49
82	Specificity of action of vanadate to the organ of corti. Hearing Research, 1981, 5, 231-243.	2.0	25
83	Respiratory quotient of stria vascularis of guinea pig in vitro. Archives of Oto-rhino-laryngology, 1978, 221, 97-103.	0.5	13
84	RESPIRATORY RATE AND ATP CONTENT OF STRIA VASCULARIS OF GUINEA PIG IN VITRO. Laryngoscope, 1978, 88, 1825???1835.	2.0	49
85	Photometric determination of picomole quantities of calcium. Analytical Chemistry, 1972, 44, 1523-1525.	6.5	4
86	Purinergic signaling in the inner ear. Purinergic Signalling, 0, , .	2.2	2